5 research outputs found

    A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice

    Get PDF
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control

    Nanopore-Based Direct RNA-Sequencing Reveals a High-Resolution Transcriptional Landscape of Porcine Reproductive and Respiratory Syndrome Virus

    Get PDF
    The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Precise assessment of the intricate sub genomic RNA (sg mRNA) populations is required to understand the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing events using short-read sequencing, making the identification of transcription-regulatory sequences (TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize the recombined RNA molecules produced in porcine alveolar macrophages during early passage infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional landscape in PRRSV. The data revealed intriguing differences in sub genomic recombination types between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share the common preferred TRS in both strains. This study also identified a substantial number of TRSmediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better control of the PRRS

    A NADC30-like PRRSV causes serious intestinal infections and tropism in piglets

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic loss to China's swine industry. Currently, a novel type 2 PRRSV, called the NADC30-like strain, is epidemic in numerous provinces of China. In this study, a NADC30-Like PRRSV strain was isolated in primary alveolar macrophage (PAM) cells from fecal samples collected from a local pig farm, which suffered severe diarrhea. A pathogenicity comparison study was conducted in 6–week‐old piglets by inoculating highly pathogenic HP-PRRSV and NADC30-Like PRRSV isolates. RT-qPCR revealed detection of NADC30-Like PRRSV but not the HP-PRRSV in the intestine. PRRSV infection-related lesions were observed in the intestine were further confirmed by histopathological and immunohistochemically examination (IHC). In addition, severe virus infections were also detected by RT-qPCR. Based on clinical observation and pathogenicity experiments, we confirmed that NADC30-Like PRRSV gained more tissue tropism, especially in the small intestine. This may be the one reason explaining why NADC-Like 30 PRRSV become a major epidemic strain in China since the first outbreak in 2013

    The transcriptional characteristics of NADC34-like PRRSV in porcine alveolar macrophages

    Get PDF
    The widespread and endemic circulation of porcine reproductive and respiratory syndrome virus (PRRSV) cause persistent financial losses to the swine industry worldwide. In 2017, NADC34-like PRRSV-2 emerged in northeastern China and spread rapidly. The dynamics analysis of immune perturbations associated with novel PRRSV lineage is still incomplete. This study performed a time-course transcriptome sequencing of NADC34-like PRRSV strain YC-2020-infected porcine alveolar macrophages (PAMs) and compared them with JXA1-infected PAMs. The results illustrated dramatic changes in the host’s differentially expressed genes (DEGs) presented at different timepoints after PRRSV infection, and the expression profile of YC-2020 group is distinct from that of JXA1 group. Functional enrichment analysis showed that the expression of many inflammatory cytokines was up-regulated following YC-2020 infection but at a significantly lower magnitude than JXA1 group, in line with the trends for most interferon-stimulated genes (ISGs) and their regulators. Meanwhile, numerous components of histocompatibility complex (MHC) class II and phagosome presented a stronger transcription suppression after the YC-2020 infection. All results imply that YC-2020 may induce milder inflammatory responses, weaker antiviral processes, and more severe disturbance of antigen processing and presentation compared with HP-PRRSV. Additionally, LAPTM4A, GLMP, and LITAF, which were selected from weighted gene co-expression network analysis (WGCNA), could significantly inhibit PRRSV proliferation. This study provides fundamental data for understanding the biological characteristics of NADC34-like PRRSV and new insights into PRRSV evolution and prevention

    Construction and characterization of a reverse genetics system of bovine parainfluenza virus type 3c as a tool for rapid screening of antivirals in vitro

    No full text
    Bovine parainfluenza virus type 3 (BPIV3) is a key pathogen associated with bovine respiratory disease complex (BRDC). However, its specific pathogenesis mechanisms have not been fully elucidated. Reverse genetics provides a useful method for understanding the pathogenic mechanism of BPIV3. To ensure the functionality of the rescue platforms, we first constructed a minigenome (MG) system of BPIV3 utilizing a 5-plasmid system in this investigation. Then, a full-length infection clone of BPIV3 was obtained from the SX-2021 strain, and different methods were employed to identify the rescued virus. Additionally, we recovered a recombinant BPIV3 using the reverse genetics system that could express enhanced green fluorescence protein (eGFP). Through the growth curve assays, the replicate capability of rBPIV3-SX-EGFP was found to be similar to that of the parental virus. Subsequently, the rBPIV3-SX-EGFP was used to determine the antiviral activity of ribavirin. The results showed that ribavirin had an anti-BPIV3 effect in MDBK cells. In conclusion, the successful development of a reverse genetic system for the SX-2021 strain establishes a foundation for future studies on BPIV3, including investigations into its pathogenic mechanism, gene function, and antiviral screening properties
    corecore