4 research outputs found

    Role of the spinal canal compliance in regulating posture‐related cerebrospinal fluid hydrodynamics in humans

    No full text
    Mechanical compliance of a compartment is defined by the change in its volume with respect to a change in the inside pressure. The compliance of the spinal canal regulates the intracranial pressure (ICP) under postural changes. Understanding how gravity affects ICP is beneficial for poorly understood cerebrospinal fluid (CSF)‐related disorders. The aim of this study was to evaluate postural effects on cranial hemo‐ and hydrodynamics. This was a prospective study, which included 10 healthy volunteers (three males, seven females, mean ± standard deviation age: 29 ± 7 years). Cine gradient‐echo phase‐contrast sequence acquired at 0.5 T, “GE double‐doughnut” scanner was used. Spinal contribution to overall craniospinal compliance (CSC), craniospinal CSF stroke volume (SV), magnetic resonance (MR)‐derived ICP (MR‐ICP), and total cerebral blood flow (TCBF) were measured in supine and upright postures using automated blood and CSF flows quantification. Statistical tests performed were two‐sided Student's t‐test, Cohen's d, and Pearson correlation coefficient. MR‐ICP and the craniospinal CSF SV were significantly correlated with the spinal contribution to the overall CSC (r = 0.83, p < 0.05) and (r = 0.62, p < 0.05), respectively. Cranial contribution to CSC increased from 44.5% ± 16% in supine to 74.9% ± 8.4% in upright posture. The average MR‐ICP dropped from 9.9 ± 3.4 mmHg in supine to −3.5 ± 1.5 mmHg. The CSF SV was over 2.5 times higher in the supine position (0.55 ± 0.14 ml) than in the upright position (0.21 ± 0.13 ml). In contrast, TCBF was slightly higher in the supine posture (822 ± 152 ml/min) than in the upright posture (761 ± 139 ml/min), although not statistically significant (p = 0.16). The spinal‐canal compliance contribution to CSC is larger than the cranial contribution in the supine posture and smaller in the upright posture. Thereby, the spinal canal plays a role in modulating ICP upon postural changes. The lower pressure craniospinal CSF system was more affected by postural changes than the higher‐pressure cerebral vascular system. Craniospinal hydrodynamics is affected by gravity and is likely to be altered by its absence in space. Level of Evidence 4 Technical Efficacy Stage

    Patient-specific cranio-spinal compliance distribution using lumped-parameter model: its relation with ICP over a wide age range

    Get PDF
    Abstract Background The distribution of cranio-spinal compliance (CSC) in the brain and spinal cord is a fundamental question, as it would determine the overall role of the compartments in modulating ICP in healthy and diseased states. Invasive methods for measurement of CSC using infusion-based techniques provide overall CSC estimate, but not the individual sub-compartmental contribution. Additionally, the outcome of the infusion-based method depends on the infusion site and dynamics. This article presents a method to determine compliance distribution between the cranium and spinal canal non-invasively using data obtained from patients. We hypothesize that this CSC distribution is indicative of the ICP. Methods We propose a lumped-parameter model representing the hydro and hemodynamics of the cranio-spinal system. The input and output to the model are phase-contrast MRI derived volumetric transcranial blood flow measured in vivo, and CSF flow at the spinal cervical level, respectively. The novelty of the method lies in the model mathematics that predicts CSC distribution (that obeys the physical laws) from the system dc gain of the discrete-domain transfer function. 104 healthy individuals (48 males, 56 females, age 25.4 ± 14.9 years, range 3–60 years) without any history of neurological diseases, were used in the study. Non-invasive MR assisted estimate of ICP was calculated and compared with the cranial compliance to prove our hypothesis. Results A significant negative correlation was found between model-predicted cranial contribution to CSC and MR-ICP. The spinal canal provided majority of the compliance in all the age groups up to 40 years. However, no single sub-compartment provided majority of the compliance in 41–60 years age group. The cranial contribution to CSC and MR-ICP were significantly correlated with age, with gender not affecting the compliance distribution. Spinal contribution to CSC significantly positively correlated with CSF stroke volume. Conclusions This paper describes MRI-based non-invasive way to determine the cranio-spinal compliance distribution in the brain and spinal canal sub-compartments. The proposed mathematics makes the model always stable and within the physiological range. The model-derived cranial compliance was strongly negatively correlated to non-invasive MR-ICP data from 104 patients, indicating that compliance distribution plays a major role in modulating ICP
    corecore