6 research outputs found

    Design of an Auxiliary Artificial Lymphatic Vessel in Treatment of Secondary Lymphedema Due to Breast Cancer

    No full text
    Breast cancer is the most common malignant tumor that affects women in the United States, Europe, and Mexico. As an adverse effect when performing treatments for this condition, secondary lymphedema associated with breast cancer occurs in some cases. This complication occurs due to the interruption of lymphatic flow in the upper extremities in conjunction with other factors such as radiation, sedentary lifestyle, removal of lymph nodes, damage to lymphatic vessels, and others. This article reviews breast cancer incidence, mortality, and survival patterns, confirming that, specifically, lymphedema has high health, social, and economic impacts. Research demonstrates that it fundamentally affects women at an early age. In approximately a third of the cases, it becomes a chronic disease. Therefore, physical therapy is essential for a better quality of life in patients who survive this disease. Surgeries and manual and pharmacological treatments are the current procedures done to reduce to reduce the alterations suffered by patients with lymphedema; however, the success of the treatments depends on each patient’s characteristics. To face this problem, the design of a lymphatic vessel has been proposed to assist the mechanical failure of the damaged lymphatic system. In this work, the design methodology used for the blueprint of the lymphatic vessel is presented, as well as the computer analysis of fluid simulation and the selection of the proposed material, resulting in the production of a micrometric design. In the future, it is expected that a surgeon will be able to implant the design of the vessel to restore lymph flow through the lymphatic system, thus helping to combat lymphedema

    A Novel Methodology for Classifying EMG Movements Based on SVM and Genetic Algorithms

    No full text
    Electromyography (EMG) processing is a fundamental part of medical research. It offers the possibility of developing new devices and techniques for the diagnosis, treatment, care, and rehabilitation of patients, in most cases non-invasively. However, EMG signals are random, non-stationary, and non-linear, making their classification difficult. Due to this, it is of vital importance to define which factors are helpful for the classification process. In order to improve this process, it is possible to apply algorithms capable of identifying which features are most important in the categorization process. Algorithms based on metaheuristic methods have demonstrated an ability to search for suitable subsets of features for optimization problems. Therefore, this work proposes a methodology based on genetic algorithms for feature selection to find the parameter space that offers the slightest classification error in 250 ms signal segments. For classification, a support vector machine is used. For this work, two databases were used, the first corresponding to the right upper extremity and the second formed by movements of the right lower extremity. For both databases, a feature space reduction of over 65% was obtained, with a higher average classification efficiency of 91% for the best subset of parameters. In addition, particle swarm optimization (PSO) was applied based on right upper extremity data, obtaining an 88% average error and a 46% reduction for the best subset of parameters. Finally, a sensitivity analysis was applied to the characteristics selected by PSO and genetic algorithms for the database of the right upper extremity, obtaining that the parameters determined by the genetic algorithms show greater sensitivity for the classification process

    Review on BCI Virtual Rehabilitation and Remote Technology Based on EEG for Assistive Devices

    No full text
    Virtual reality has been widely used in various industries, such as entertainment, communication, and healthcare, to mention a few. In the health industry, in combination with the brain–computer interfaces (BCIs), virtual reality could produce rehabilitation measures that may contribute novel strategies such as remote rehabilitation or telerehabilitation. The design and development of BCIs integrate different processes, including biosignals acquisition and processing, feature extraction and selection, classification of signals, and application of the technology to patients under rehabilitation treatments. This manuscript presents a literature review of the papers focused on the implementation of BCI and assistive technologies for remote rehabilitation based on virtual reality implementation. The purpose of this comprehensive review is to identify those studies that take advantage of virtual reality in combination with a biomedical technology to improve the performances of diverse rehabilitation processes. Various revisited studies provided a complete system for remote rehabilitation. These findings could lead to applying these models in diverse rehabilitation tasks

    Applying Differential Neural Networks to Characterize Microbial Interactions in an Ex Vivo Gastrointestinal Gut Simulator

    No full text
    The structure of mixed microbial cultures—such as the human gut microbiota—is influenced by a complex interplay of interactions among its community members. The objective of this study was to propose a strategy to characterize microbial interactions between particular members of the community occurring in a simulator of the human gastrointestinal tract used as the experimental system. Four runs were carried out separately in the simulator: two of them were fed with a normal diet (control system), and two more had the same diet supplemented with agave fructans (fructan-supplemented system). The growth kinetics of Lactobacillus spp., Bifidobacterium spp., Salmonella spp., and Clostridium spp. were assessed in the different colon sections of the simulator for a nine-day period. The time series of microbial concentrations were used to estimate specific growth rates and pair-wise interaction coefficients as considered by the generalized Lotka-Volterra (gLV) model. A differential neural network (DNN) composed of a time-adaptive set of differential equations was applied for the nonparametric identification of the mixed microbial culture, and an optimization technique was used to determine the interaction parameters, considering the DNN identification results and the structure of the gLV model. The assessment of the fructan-supplemented system showed that microbial interactions changed significantly after prebiotics administration, demonstrating their modulating effect on microbial interactions. The strategy proposed here was applied satisfactorily to gain quantitative and qualitative knowledge of a broad spectrum of microbial interactions in the gut community, as described by the gLV model. In the future, it may be utilized to study microbial interactions within mixed cultures using other experimental approaches and other mathematical models (e.g., metabolic models), which will yield crucial information for optimizing mixed microbial cultures to perform certain processes—such as environmental bioremediation or modulation of gut microbiota—and to predict their dynamics

    ABSTRACTS

    No full text
    corecore