33 research outputs found

    Beads of acryloylated polyaminoacidic matrices containing 5-Fluorouracil for drug delivery.

    Get PDF
    Spherical polymeric microparticles have been prepared by a reverse phase suspension polymerization technique. The starting polymer was alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA), partially derivatized with glycidylmethacrylate (GMA). PHEA-GMA copolymer (PHG) was crosslinked in the presence of N,N'-dimethylacrylamide (DMAA) or N,N'-ethylenebisacrylamide (EBA). 5-fluorouracil was incorporated into PHG-DMAA or PHG-EBA beads both during and after the crosslinking process. Swelling studies revealed a high affinity toward aqueous medium, influenced by the presence of 5-fluorouracil. The in vitro release study showed that the release rate depends on the chemical structure of the beads and the procedure adopted to incorporate 5-fluorouracil into the microparticles

    Radical Crosslinked Albumin Microspheres as Potential Drug Delivery Systems: Preparation and In Vitro Studies

    Get PDF
    The aim of this research is the preparation of acryloylated bovine serum albumin microspheres and the evaluation of their employment in drug delivery. The influence of preparation parameters on albumin microspheres and the chemicophysical properties of loaded drugs were investigated. In particular, we focused our attention on acylation albumin degree, amount of acryloylated albumin against comonomer in the polymerization step, and finally the release profile. We considered on the interaction drug-matrix, the fuctionalization degree of albumin, and the water affinity of matrix

    Radical Crosslinked Albumin Microspheres as Potential Drug Delivery Systems: Preparation and In Vitro Studies

    Get PDF
    The aim of this research is the preparation of acryloylated bovine serum albumin microspheres and the evaluation of their employment in drug delivery. The influence of preparation parameters on albumin microspheres and the chemicophysical properties of loaded drugs were investigated. In particular, we focused our attention on acylation albumin degree, amount of acryloylated albumin against comonomer in the polymerization step, and finally the release profile. We considered on the interaction drug-matrix, the fuctionalization degree of albumin, and the water affinity of matrix

    Proprieta' chimico fisiche ed autodiffusione in soluzioni di tensioattivi

    No full text
    Dottorato di ricerca in scienze chimiche. 8. ciclo. A.a. 1994-95. Supervisore G. A. Ranieri. Coordinatore M. TerenziConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Control of the Verticillium Wilt on Tomato Plants by Means of Olive Leaf Extracts Loaded on Chitosan Nanoparticles

    No full text
    In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field

    Sintesi di biomateriali a base di cellulosa derivatizzata

    No full text
    Dottorato di Ricerca in Metodologie per lo Sviluppo di Molecole di interesse Farmacologico,Ciclo XX, a.a.2007-2008Universiotà della Calabri

    Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy

    No full text
    Thermo-sensitive vesicles are a promising tool for triggering the release of drugs to solid tumours when used in combination with mild hyperthermia. Responsivity to temperature makes them intelligent nanodevices able to provide a site-specific chemotherapy. Following a brief introduction concerning hyperthermia and its advantageous combination with vesicular systems, recent investigations on thermo-sensitive vesicles useful for controlled drug delivery in cancer treatment are reported in this review. In particular, the influence of bilayer composition on the in vitro and in vivo behaviour of thermo-sensitive formulations currently under investigation have been extensively explored

    Macromolecular systems for controlled drug delivery

    No full text
    Dottorato di ricerca in Methodologies for the Development of Molecules of pharmacological Interest XXII Ciclo,2006-2009In recent years, significant efforts have been devoted to the application of nanotechnology for the development of devices to be employed as drug delivery systems. The synergic combination of polymeric science, drug delivery concepts and material technology offers challenging and precious opportunities for the achievement of new useful materials. In particular surfactants, lipids and polymeric systems play an important role in modern drug delivery, where they may allow control of the drug release rate, enhance effective drug solubility, minimize its degradation, contribute to reduced its toxicity and facilitate control of its uptake. In all, they contribute significantly to therapeutic efficiency.Università della Calabri

    Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties

    No full text
    We designed novel niosomes based on alkyl glucopyranoside surfactants and containing methotrexate as anticancer drug, to be used in the pharmaceutical field. The effects of surfactants with chains of different length on niosome size and their distribution, drug entrapment efficiencies and in vitro drug release were determined. Systems made of alkyl glucopyranosides and cholesterol form vesicles whose average size scales with the alkyl chains length of such surfactants. Vesicles size ranges between 300 and 500 nm, with low polydispersity index. In addition, the hemolytic activity of alkyl glucopyranosides as surfactant solutions or vesicular formulations was studied and compared, to identify possible structure-activity relationships. High methotrexate entrapment efficiency was obtained, confirming significant interactions between the drug and the niosomal matrices. After 24 h the amount of methotrexate released from niosomal formulations is effectively delayed, compared to the free drug in solution. Hemolytic tests show that sugar-based surfactants are more hemolytic the longer is their alkyl chain. When the surfactants are in vesicular form, the reverse behavior holds. It was also inferred that vesicle formation reduces the surfactant toxicity. These niosomal formulations can be used as methotrexate delivery systems in anticancer therapy. (C) 2013 Elsevier B. V. All rights reserved

    Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt

    No full text
    The aim of this study was to improve the transdermal permeation of sulfadiazine sodium, employing synergistic combination of surfactants (in the form of niosomes) and additives with different number of hydroxylic groups, (following referred to as "alcohol"), as component of the bilayer. In particular the effect of different concentration of each alcohol (ethanol, propylene glycol or glycerol, from 5%, to 40% v/v) on niosomes size and distribution, drug entrapment efficiencies and ex vivo drug percutaneous permeation were evaluated, identifying formulations giving the best performances. The findings revealed that the presence of alcohol critically affect the physico-chemical properties of niosomes, with regards to dimensions, drug encapsulation and permeation. Vesicular size increased with the amount of alcohol and at the same alcohol concentration, follow the sequence ethanol. >. propylene glycol. >. glycerol. Loaded niosomes were larger than empty ones. Low E% values were found for ethanol, even less in propylene glycol and glycerol based samples, confirming that the chemical structure of the alcohol and its physico-chemical properties, affected the sulfadiazine entrapment efficiency. The comparative evaluation of percutaneous permeation profiles showed that the cumulative amount of permeated drug increases with alcohol concentration up to 20% v/v. Higher concentration (40% v/v) resulted in a strong decrease of the potential skin permeation. Best performances were obtained with glycerol. In all cases ex vivo sulfadiazine percutaneous permeations are controlled and improved respect to the corresponding free drug solutions and traditional niosomes used as controls
    corecore