3 research outputs found

    DƩtection de protƩines par diffusion Raman exaltƩe par effet de pointe (TERS)

    Get PDF
    La concentration locale des messagers chimiques seĢcreĢteĢs par les cellules peut eĢ‚tre mesureĢe afin de mieux comprendre les meĢcanismes moleĢculaires lieĢs aĢ€ diverses maladies, dont les meĢtastases du cancer. De nouvelles techniques analytiques sont requises pour effectuer ces mesures locales de marqueurs biologiques aĢ€ proximiteĢ des cellules. Ce meĢmoire preĢsentera le deĢveloppement dā€™une nouvelle technique baseĢe sur la reĢponse plasmonique sur des leviers AFM, permettant dā€™eĢtudier les reĢactions chimiques et biologiques aĢ€ la surface des leviers graĢ‚ce au pheĢnomeĢ€ne de reĢsonance des plasmons de surface (SPR), ainsi quā€™aĢ€ la diffusion Raman exalteĢe par effet de pointe (TERS). En effet, il est possible de localiser lā€™amplification du signal Raman aĢ€ la pointe dā€™un levier AFM, tout comme le principe de la diffusion Raman exalteĢe par effet de surface (SERS) baseĢe sur la diffusion de la lumieĢ€re par des nanoparticules meĢtalliques, et permettant une large amplification du signal Raman. La surface du levier est recouverte dā€™une nano-couche meĢtallique dā€™or, suivi par des reĢactions biologiques pour lā€™immobilisation dā€™un reĢcepteur moleĢculaire, creĢant ainsi un biocapteur sur la pointe du levier. Une deĢtection secondaire utilisant des nanoparticules dā€™or conjugueĢes aĢ€ un anticorps secondaire permet eĢgalement une amplification du signal SPR et Raman lors de la deĢtection dā€™antigeĢ€ne. Ce meĢmoire deĢmontrera le deĢveloppement et la validation de la deĢtection de lā€™immunoglobuline G (IgG) sur la pointe du levier AFM.Dans des projets futurs, cette nouvelle technique dā€™instrumentation et dā€™imagerie sera optimiseĢe graĢ‚ce aĢ€ la creĢation dā€™un micro-deĢtecteur proteĢique geĢneĢralement adapteĢ pour lā€™eĢtude de la communication cellulaire. En inteĢgrant le signal SPR aĢ€ la microscopie AFM, il sera alors possible de deĢvelopper des biocapteurs SPR coupleĢs aĢ€ une sonde aĢ€ balayage, ce qui permettra dā€™effectuer une analyse topographique et de lā€™environnement chimique dā€™eĢchantillons cellulaires en temps reĢel, pour la mesure des messagers moleĢculaires seĢcreĢteĢs dans la matrice extracellulaire, lors de la communication cellulaire.Measurement of the local concentration of chemical messengers secreted by cells may give a better understanding of molecular mechanisms related to different diseases, such as cancer metastasis. Current techniques are not suited to perform such measurements and thus, new analytical techniques must be developed. This Masterā€™s thesis reports the development of a new technique based on the plasmonic response of atomic force microscopy (AFM) tips, which will ultimately allow monitoring of chemical and biological molecules on the surface of a cantilever by use of surface plasmon resonance (SPR) and tip-enhanced Raman scattering (TERS). Indeed, it is possible to localize the enhancement of the Raman signal on the AFM tip using principles associated to surface-enhanced Raman spectroscopy (SERS), based on the absorption of light by nanometer-sized metal particles, resulting in a large enhancement of the Raman signal. The AFM tip was constructed by the deposition of a nanometer-size gold layer, followed by the assembly of a biosensor with a biomolecular receptor. Gold nanoparticles (AuNPs) conjugated with a secondary antibody served as the secondary detection step. In addition, the use of the gold nanoparticles for antigen detection allows an amplification of the SPR and Raman signals. This Masterā€™s thesis will demonstrate the development and validation of a biosensor for immunoglobuline G (IgG) at the tip of an AFM cantilever.This thesis sets the basis for future projects, where this new imaging technique will be developed for monitoring cellular communication by exploiting the plasmonic signal at the AFM tip. Different biosensors will then be developed and coupled to an AFM probe for scanning the chemical environment and detect in real-time chemical messengers secreted in the extracellular matrix in cellular communication

    Plasmonic Nanopipette Biosensor

    No full text
    Integrating a SERS immunoassay on a plasmonic ā€œpatch clampā€ nanopipette enabled nanobiosensing for the detection of IgG. A SERS response was obtained using a sandwich assay benefiting from plasmon coupling between a capture Au nanoparticle (AuNP) on a nanotip and a second AuNP modified with a Raman active reporter and an antibody selective for IgG. The impact of nanoparticle shape and surface coverage was investigated alongside the choice of Raman active reporter, deposition pH, and plasmonic coupling, in an attempt to fully understand the plasmonic properties of nanopipettes and to optimize the nanobiosensor for the detection of IgG. These probes will find applications in various fields due to their nanoscale size leading to the possibility of spatially and temporally addressing their location near cells to monitor secretion of biomolecules
    corecore