3 research outputs found
DƩtection de protƩines par diffusion Raman exaltƩe par effet de pointe (TERS)
La concentration locale des messagers chimiques seĢcreĢteĢs par les cellules peut eĢtre mesureĢe afin de mieux comprendre les meĢcanismes moleĢculaires lieĢs aĢ diverses maladies, dont les meĢtastases du cancer. De nouvelles techniques analytiques sont requises pour effectuer ces mesures locales de marqueurs biologiques aĢ proximiteĢ des cellules. Ce meĢmoire preĢsentera le deĢveloppement dāune nouvelle technique baseĢe sur la reĢponse plasmonique sur des leviers AFM, permettant dāeĢtudier les reĢactions chimiques et biologiques aĢ la surface des leviers graĢce au pheĢnomeĢne de reĢsonance des plasmons de surface (SPR), ainsi quāaĢ la diffusion Raman exalteĢe par effet de pointe (TERS). En effet, il est possible de localiser lāamplification du signal Raman aĢ la pointe dāun levier AFM, tout comme le principe de la diffusion Raman exalteĢe par effet de surface (SERS) baseĢe sur la diffusion de la lumieĢre par des nanoparticules meĢtalliques, et permettant une large amplification du signal Raman. La surface du levier est recouverte dāune nano-couche meĢtallique dāor, suivi par des reĢactions biologiques pour lāimmobilisation dāun reĢcepteur moleĢculaire, creĢant ainsi un biocapteur sur la pointe du levier. Une deĢtection secondaire utilisant des nanoparticules dāor conjugueĢes aĢ un anticorps secondaire permet eĢgalement une amplification du signal SPR et Raman lors de la deĢtection dāantigeĢne. Ce meĢmoire deĢmontrera le deĢveloppement et la validation de la deĢtection de lāimmunoglobuline G (IgG) sur la pointe du levier AFM.Dans des projets futurs, cette nouvelle technique dāinstrumentation et dāimagerie sera optimiseĢe graĢce aĢ la creĢation dāun micro-deĢtecteur proteĢique geĢneĢralement adapteĢ pour lāeĢtude de la communication cellulaire. En inteĢgrant le signal SPR aĢ la microscopie AFM, il sera alors possible de deĢvelopper des biocapteurs SPR coupleĢs aĢ une sonde aĢ balayage, ce qui permettra dāeffectuer une analyse topographique et de lāenvironnement chimique dāeĢchantillons cellulaires en temps reĢel, pour la mesure des messagers moleĢculaires seĢcreĢteĢs dans la matrice extracellulaire, lors de la communication cellulaire.Measurement of the local concentration of chemical messengers secreted by cells may give a better understanding of molecular mechanisms related to different diseases, such as cancer metastasis. Current techniques are not suited to perform such measurements and thus, new analytical techniques must be developed. This Masterās thesis reports the development of a new technique based on the plasmonic response of atomic force microscopy (AFM) tips, which will ultimately allow monitoring of chemical and biological molecules on the surface of a cantilever by use of surface plasmon resonance (SPR) and tip-enhanced Raman scattering (TERS). Indeed, it is possible to localize the enhancement of the Raman signal on the AFM tip using principles associated to surface-enhanced Raman spectroscopy (SERS), based on the absorption of light by nanometer-sized metal particles, resulting in a large enhancement of the Raman signal. The AFM tip was constructed by the deposition of a nanometer-size gold layer, followed by the assembly of a biosensor with a biomolecular receptor. Gold nanoparticles (AuNPs) conjugated with a secondary antibody served as the secondary detection step. In addition, the use of the gold nanoparticles for antigen detection allows an amplification of the SPR and Raman signals. This Masterās thesis will demonstrate the development and validation of a biosensor for immunoglobuline G (IgG) at the tip of an AFM cantilever.This thesis sets the basis for future projects, where this new imaging technique will be developed for monitoring cellular communication by exploiting the plasmonic signal at the AFM tip. Different biosensors will then be developed and coupled to an AFM probe for scanning the chemical environment and detect in real-time chemical messengers secreted in the extracellular matrix in cellular communication
Plasmonic Nanopipette Biosensor
Integrating a SERS immunoassay on
a plasmonic āpatch clampā
nanopipette enabled nanobiosensing for the detection of IgG. A SERS
response was obtained using a sandwich assay benefiting from plasmon
coupling between a capture Au nanoparticle (AuNP) on a nanotip and
a second AuNP modified with a Raman active reporter and an antibody
selective for IgG. The impact of nanoparticle shape and surface coverage
was investigated alongside the choice of Raman active reporter, deposition
pH, and plasmonic coupling, in an attempt to fully understand the
plasmonic properties of nanopipettes and to optimize the nanobiosensor
for the detection of IgG. These probes will find applications in various
fields due to their nanoscale size leading to the possibility of spatially
and temporally addressing their location near cells to monitor secretion
of biomolecules