23 research outputs found

    Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility

    Get PDF
    We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants repo

    Evaluation of Fanconi Anemia genes in familial breast cancer predisposition

    No full text
    Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure, and susceptibility to cancer. FA has eight known complementation groups and is caused by mutations in at least seven genes. Biallelic BRCA2 mutations were shown recently to cause FA-D1. Monoallelic (heterozygous) BRCA2 mutations confer a high risk of breast cancer and are a major cause of familial breast cancer. To investigate whether heterozygous variants in other FA genes are high penetrance breast cancer susceptibility alleles, we screened germ-line DNA from 88 BRCA1/2-negative families, each with at least three cases of breast cancer, for mutations in FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG. Sixty-nine sequence variants were identified of which 25 were exonic. None of the exonic variants resulted in translational frameshifts or nonsense codons and 14 were polymorphisms documented previously. Of the remaining 11 exonic variants, 2 resulted in synonymous changes, and 7 were present in controls. Only 2 conservative missense variants, 1 in FANCA and 1 in FANCE, were each found in a single family and were not present in 300 controls. The results indicate that FA gene mutations, other than in BRCA2, are unlikely to be a frequent cause of highly penetrant breast cancer predisposition

    A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease

    Get PDF
    Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns

    PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene

    No full text
    PALB2 interacts with BRCA2, and biallelic mutations in PALB2 (also known as FANCN), similar to biallelic BRCA2 mutations, cause Fanconi anemia. We identified monoallelic truncating PALB2 mutations in 10/923 individuals with familial breast cancer compared with 0/1,084 controls (P = 0.0004) and show that such mutations confer a 2.3-fold higher risk of breast cancer (95% confidence interval (c.i.) = 1.4-3.9, P = 0.0025). The results show that PALB2 is a breast cancer susceptibility gene and further demonstrate the close relationship of the Fanconi anemia-DNA repair pathway and breast cancer predisposition

    A multicenter study of cancer incidence in CHEK2 1100delC mutation carriers

    No full text
    The CHEK2 1100delC protein-truncating mutation has a carrier frequency of approximately 0.7% in Northern and Western European populations and confers an approximately 2-fold increased risk of breast cancer. It has also been suggested to increase risks of colorectal and prostate cancer, but its involvement with these or other types of cancer has not been confirmed. The incidence of cancer other than breast cancer in 11,116 individuals from 734 non-BRCA1/2 breast cancer families from the United Kingdom, Germany, Netherlands, and the United States was compared with that predicted by population rates. Relative risks (RR) to carriers and noncarriers were estimated by maximum likelihood, via the expectation-maximization algorithm to allow for unknown genotypes. Sixty-seven families contained at least one tested CHEK2 1100delC mutation carrier. There was evidence of underreporting of cancers in male relatives (422 cancers observed, 860 expected) but not in females (322 observed, 335 expected); hence, we focused on cancer risks in female carriers. The risk of cancers other than breast cancer in female carriers was not significantly elevated, although a modest increase in risk could not be excluded (RR, 1.18; 95% confidence interval, 0.64-2.17). The carrier risk was not significantly raised for any individual cancer site, including colorectal cancer (RR, 1.60; 95% confidence interval, 0.54-4.71). However, between ages 20 to 50 years, the risks of colorectal and lung cancer were both higher in female carriers than noncarriers (P = 0.041 and 0.0001, respectively). There was no evidence of a higher prostate cancer risk in carriers than noncarriers (P = 0.26), although underreporting of male cancers limited our power to detect such a difference. Our results suggest that the risk of cancer associated with CHEK2 1100delC mutations is restricted to breast cancer, although we cannot rule out a small increase in overall cancer ris

    ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles

    No full text
    We screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and two in controls (P = 0.0047). The results demonstrate that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% confidence interval (c.i.) = 1.51-3.78, P = 0.0003). There was no evidence that other classes of ATM variant confer a risk of breast cancer.<br/
    corecore