9 research outputs found
Classification of Distal Growth Plate Ossification States of the Radius Bone Using a Dedicated Ultrasound Device and Machine Learning Techniques for Bone Age Assessments
X-ray imaging, based on ionizing radiation, can be used to determine bone age by examining
distal growth plate fusion in the ulna and radius bones. Legal age determination approaches based
on ultrasound signals exist but are unsuitable to reliably determine bone age. We present a low-cost,
mobile system that uses one-dimensional ultrasound radio frequency signals to obtain a robust
binary classifier enabling the determination of bone age from data of girls and women aged 9 to 24
years. These data were acquired as part of a clinical study conducted with 148 subjects. Our system
detects the presence or absence of the epiphyseal plate by moving ultrasound array transducers
along the forearm, measuring reflection and transmission signals. Even though classical digital signal
processing methods did not achieve a robust classifier, we achieved an F1 score of approximately
87% for binary classification of completed bone growth with machine learning approaches, such as
the gradient boosting machine method CatBoost. We demonstrate that our ultrasound system can
classify the fusion of the distal growth plate of the radius bone and the completion of bone growth
with high accuracy. We propose a non-ionizing alternative to established X-ray imaging methods for
this purpose
Drug survival superiority of tumor necrosis factor inhibitors and interleukin-17 inhibitors over Janus kinase inhibitors and interleukin-12/23 inhibitors in German psoriatic arthritis outpatients: retrospective analysis of the RHADAR database
ObjectiveTreatment options with disease-modifying antirheumatic drugs (DMARDs) for psoriatic arthritis (PsA) have evolved over recent years. In addition to Janus kinase inhibitors (JAKi), four classes of biologic DMARDs (bDMARDs; interleukin [IL]-23 inhibitors [IL-23i], IL-12/23 inhibitors [IL-12/23i], tumor necrosis factor inhibitors [TNFi], and IL-17 inhibitors [IL-17i]) are currently approved for moderate to severe PsA treatment. There is minimal evidence of the persistence of these drugs among PsA outpatients in a real-world scenario during the period following the approval of JAKi. Therefore, we aimed to analyze the drug survival rates of biologic and JAKi therapies among German PsA outpatients during routine clinical care.MethodsWe retrospectively analyzed PsA patients with a new prescription for a biologic or JAKi in the RHADAR database between January 2015 and October 2023. Kaplan-Meier Curves and Cox regression modelling were used to compare drug survival rates.Results1352 new prescriptions with bDMARDs (IL-12/23i [n=50], IL-23i [n=31], TNFi [n=774], IL-17i [n=360]) or JAKi (n=137) were identified. The 5-year drug survival rate was 67.8% for IL-17i, 62.3% for TNFi, 53.3% for JAKi, and 46.0% for IL-12/23i. Discontinuation probabilities for JAKi and IL-12/23i were significantly higher compared with TNFi (JAKi hazard ratio [HR] 1.66, [95% CI 1.23–2.24], p=0.001; IL-12/23i HR 1.54, [95% CI 1.02–2.33], p=0.042) and IL-17i (JAKi HR 1.77, [95% CI 1.27–2.47], p=0.001; IL-12/23i HR 1.64, [95% CI 1.06–2.55], p=0.027). JAKi-treated patients had more severe disease and more osteoarthritis (OA) compared to TNFi and more OA compared to IL-17i. ConclusionGerman PsA outpatients might persist longer with TNFi and IL-17i compared with IL-12/23i or JAKi. For TNFi, differences in subgroup characteristics and comorbidities (OA) may have affected drug survival rates. For IL-17i, the longer drug survival might not only be related to less OA compared to JAKi and, therefore, might be affected by other factors
Classification of Distal Growth Plate Ossification States of the Radius Bone Using a Dedicated Ultrasound Device and Machine Learning Techniques for Bone Age Assessments
X-ray imaging, based on ionizing radiation, can be used to determine bone age by examining distal growth plate fusion in the ulna and radius bones. Legal age determination approaches based on ultrasound signals exist but are unsuitable to reliably determine bone age. We present a low-cost, mobile system that uses one-dimensional ultrasound radio frequency signals to obtain a robust binary classifier enabling the determination of bone age from data of girls and women aged 9 to 24 years. These data were acquired as part of a clinical study conducted with 148 subjects. Our system detects the presence or absence of the epiphyseal plate by moving ultrasound array transducers along the forearm, measuring reflection and transmission signals. Even though classical digital signal processing methods did not achieve a robust classifier, we achieved an F1 score of approximately 87% for binary classification of completed bone growth with machine learning approaches, such as the gradient boosting machine method CatBoost. We demonstrate that our ultrasound system can classify the fusion of the distal growth plate of the radius bone and the completion of bone growth with high accuracy. We propose a non-ionizing alternative to established X-ray imaging methods for this purpose
Real-Time Volumetric Ultrasound Research Platform with 1024 Parallel Transmit and Receive Channels
Volumetric ultrasound imaging is of great importance in many medical fields, especially in cardiology, but also in therapy monitoring applications. For development of new imaging technologies and scanning strategies, it is crucial to be able to use a hardware platform that is as free and flexible as possible and does not restrict the user in his research in any way. For this purpose, multi-channel ultrasound systems are particularly suitable, as they are able to control each individual element of a matrix array without the use of a multiplexer. We set out to develop a fully integrated, compact 1024-channel ultrasound system that provides full access to all transmission parameters and all digitized raw data of each transducer element. For this purpose, we synchronize four research scanners of our latest “DiPhAS” ultrasound research system generation, each with 256 parallel channels, all connected to a single PC on whose GPUs the entire signal processing is performed. All components of the system are housed in a compact, movable 19-inch rack. The system is designed as a general-purpose platform for research in volumetric imaging; however, the first-use case will be therapy monitoring by tracking radiation-sensitive ultrasound contrast agents
Multifactorial White Matter Damage in the Acute Phase and Pre-Existing Conditions May Drive Cognitive Dysfunction after SARS-CoV-2 Infection: Neuropathology-Based Evidence
Background: There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. Methods: We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. Results: All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic–ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). Conclusions: Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release