15 research outputs found
Brain responses to subject-verb agreement violations in spoken language in developmental dyslexia: An ERP study
This study investigates the presence and latency of the P600 component in response to subject-verb agreement violations in spoken language in people with and without developmental dyslexia. The two groups performed at-ceiling level on judging the sentences on their grammaticality but the ERP data revealed subtle differences between them. The P600 tended to peak later in the left posterior region in the dyslexic group compared with the control group. In addition, the group of dyslexic subjects did not show a P600 in response to sentences with a plural NP subject. These results suggest that brain activation involved in syntactic repair is more affected by linguistic complexity in developmental dyslexia compared with non-dyslexic individuals. Copyright (c) 2006 John Wiley & Sons, Ltd
mRNA-1273 vaccinated inflammatory bowel disease patients receiving TNF inhibitors develop broad and robust SARS-CoV-2-specific CD8<sup>+</sup> T cell responses
SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.</p
Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis
The presence of autoantibodies is one of the hallmarks of rheumatoid arthritis (RA). In the past few decades, rheumatoid factors (autoantibodies that recognize the Fc-tail of immunoglobulins) as well as anti-citrullinated protein antibodies (ACPAs) have been studied intensively. ACPAs recognize post-translationally modified proteins in which the amino acid arginine has been converted into a citrulline. More recently, other autoantibody systems recognizing post-translationally modified proteins have also gained attention, including autoantibodies recognizing fragmented immunoglobulin (anti-hinge antibodies), autoantibodies recognizing acetylated proteins and autoantibodies recognizing proteins that are modified by adducts formed under oxidative stress. In particular, detailed insights have been obtained on the presence and properties of autoantibodies recognizing carbamylated proteins, commonly called anti-carbamylated protein (anti-CarP) antibodies. In this Review, we summarize the current knowledge relating to these emerging autoantibodies that recognize post-translationally modified proteins identified in RA, with an emphasis on anti-CarP antibodie