134 research outputs found
Regularizing Portfolio Optimization
The optimization of large portfolios displays an inherent instability to
estimation error. This poses a fundamental problem, because solutions that are
not stable under sample fluctuations may look optimal for a given sample, but
are, in effect, very far from optimal with respect to the average risk. In this
paper, we approach the problem from the point of view of statistical learning
theory. The occurrence of the instability is intimately related to over-fitting
which can be avoided using known regularization methods. We show how
regularized portfolio optimization with the expected shortfall as a risk
measure is related to support vector regression. The budget constraint dictates
a modification. We present the resulting optimization problem and discuss the
solution. The L2 norm of the weight vector is used as a regularizer, which
corresponds to a diversification "pressure". This means that diversification,
besides counteracting downward fluctuations in some assets by upward
fluctuations in others, is also crucial because it improves the stability of
the solution. The approach we provide here allows for the simultaneous
treatment of optimization and diversification in one framework that enables the
investor to trade-off between the two, depending on the size of the available
data set
Exposure-Based Cash-Flow-At-Risk for Value-Creating Risk Management Under Macroeconomic Uncertainty
A strategically minded CFO will realize that strategic corporate risk management is about finding the right balance between risk prevention and proactive value generation. Efficient risk and performance management requires adequate assessment of risk and risk exposures on the one hand and performance on the other. Properly designed, a risk measure should provide information on to what extend the firm's performance is at risk, what is causing that risk, the relative importance of non-value-adding and value-adding risk, and the possibilities to use risk management to reduce total risk. In this chapter, we present an approach exposure-based cash-flow-at-risk to calculating a firm's downside risk conditional on the firm's exposure to non-value-adding macroeconomic and market risk and to analyzing corporate performance adjusted for the impact of non-value-adding risk
Self-affinity in financial asset returns
We test for departures from normal and independent and identically distributed (NIID) log returns, for log returns under the alternative hypothesis that are self-affine and either long-range dependent, or drawn randomly from an L-stable distribution with infinite higher-order moments. The finite sample performance of estimators of the two forms of self-affinity is explored in a simulation study. In contrast to rescaled range analysis and other conventional estimation methods, the variant of fluctuation analysis that considers finite sample moments only is able to identify both forms of self-affinity. When log returns are self-affine and long-range dependent under the alternative hypothesis, however, rescaled range analysis has higher power than fluctuation analysis. The techniques are illustrated by means of an analysis of the daily log returns for the indices of 11 stock markets of developed countries. Several of the smaller stock markets by capitalization exhibit evidence of long-range dependence in log returns
Treatment of rising damp in historical buildings: wall base ventilation
Intervention in older buildings increasingly requires extensive and objective knowledge of what one will be working with. The multifaceted aspect of work carried out on buildings tends to encompass a growing number of specialities, with marked emphasis on learning the causes of many of the problems that affect these buildings and the possible treatments that can solve them. Moisture transfer in walls of old buildings, which are in direct contact with the ground, leads to a migration of soluble salts responsible for many building pathologies.http://www.sciencedirect.com/science/article/B6V23-4H7T0H7-1/1/f5e8a4ec173c5dadf120770678facf4
- …