157 research outputs found

    Highly skewed T-cell receptor V-beta chain repertoire in the bone marrow is associated with response to immunosuppressive drug therapy in children with very severe aplastic anemia

    Get PDF
    One of the major obstacles of immunosuppressive therapy (IST) in children with severe aplastic anemia (SAA) comes from the often months-long unpredictability of bone-marrow (BM) recovery. In this prospective study in children with newly diagnosed very severe AA (n=10), who were enrolled in the therapy study SAA-BFM 94, we found a dramatically reduced diversity of both CD4+ and CD8+ BM cells, as scored by comprehensive V-beta chain T-cell receptor (TCR) analysis. Strongly skewed TCR V-beta pattern was highly predictive for good or at least partial treatment response (n=6, CD8+ complexity scoring median 35.5, range 24–73). In contrast, IST in patients with rather moderate reduction of TCR V-beta diversity (n=4, CD8+ complexity scoring median 109.5, range 82–124) always failed (P=0.0095). If confirmed in a larger series of patients, TCR V-beta repertoire in BM may help to assign children with SAA up-front either to IST or to allogeneic stem-cell transplantation

    The EHA research roadmap: anemias

    Get PDF
    In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by one to two section editors who were leading international experts in the field. In the five years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The eleven EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cellbased Immune Therapies; and Gene Therap

    Multicenter Experience Using Total Lymphoid Irradiation and Antithymocyte Globulin as Conditioning for Allografting in Hematological Malignancies

    Get PDF
    A non myeloablative conditioning with total lymphoid irradiation (TLI) and antithymocyte globulin (ATG) was shown to protect against graft-versus-host disease (GVHD). To evaluate the effects of TLI-ATG in a multicenter study, 45 heavily pretreated patients, median age 51, with lymphoid (n = 38) and myeloid (n = 7) malignancies were enrolled at 9 centers. Twenty-eight patients (62%) received at least 3 lines of treatment before allografting, and 13 (29%) had refractory/relapsed disease at the time of transplantation. Peripheral blood hematopoietic cells were from HLA identical sibling (n = 30), HLA-matched (n = 9), or 1 antigen HLA-mismatched (n = 6) unrelated donors. A cumulative TLI dose of 8 Gy was administered from day -11 through -1 with ATG at the dose of 1.5 mg/kg/day (from day -11 through -7). GVHD prophylaxis consisted of cyclosporine and mycophenolate mofetil. Donor engraftment was reached in 95% of patients. Grade II to IV acute GVHD (aGVHD) developed in 6 patients (13.3%), and in 2 of these patients, it developed beyond day 100. Incidence of chronic GVHD (cGVHD) was 35.8%. One-year nonrelapse mortality was 9.1%. After a median follow-up of 28 months (range, 3-57 months) from transplantation, median overall survival was not reached, whereas median event-free survival was 20 months. This multicenter experience confirms that TLI-ATG protects against GVHD and maintains graft-vs-tumor effects

    Incidence and Outcome of Invasive Fungal Diseases after Allogeneic Stem Cell Transplantation: A Prospective Study of the Gruppo Italiano Trapianto Midollo Osseo (GITMO).

    Get PDF
    AbstractEpidemiologic investigation of invasive fungal diseases (IFDs) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) may be useful to identify subpopulations who might benefit from targeted treatment strategies. The Gruppo Italiano Trapianto Midollo Osseo (GITMO) prospectively registered data on 1858 consecutive patients undergoing allo-HSCT between 2008 and 2010. Logistic regression analysis was performed to identify risk factors for proven/probable IFD (PP-IFD) during the early (days 0 to 40), late (days 41 to 100), and very late (days 101 to 365) phases after allo-HSCT and to evaluate the impact of PP-IFDs on 1-year overall survival. The cumulative incidence of PP-IFDs was 5.1% at 40 days, 6.7% at 100 days, and 8.8% at 12 months post-transplantation. Multivariate analysis identified the following variables as associated with PP-IFDs: transplant from an unrelated volunteer donor or cord blood, active acute leukemia at the time of transplantation, and an IFD before transplantation in the early phase; transplant from an unrelated volunteer donor or cord blood and grade II-IV acute graft-versus-host disease (GVHD) in the late phase; and grade II-IV acute GVHD and extensive chronic GVHD in the very late phase. The risk for PP-IFD was significantly higher when acute GVHD was followed by chronic GVHD and when acute GVHD occurred in patients undergoing transplantation with grafts from other than matched related donors. The presence of PP-IFD was an independent factor in long-term survival (hazard ratio, 2.90; 95% confidence interval, 2.32 to 3.62; P < .0001). Our findings indicate that tailored prevention strategies may be useful in subpopulations at differing levels of risk for PP-IFDs

    Impact of T‐cell depletion strategies on outcomes following hematopoietic stem cell transplantation for idiopathic aplastic anemia: A study on behalf of the European blood and marrow transplant severe aplastic anemia working party

    Get PDF
    We retrospectively analyzed the outcomes of 1837 adults and children with severe aplastic anemia (SAA) who underwent matched sibling donor (MSD) and matched unrelated donor (MUD) hemopoietic stem cell transplantation (HSCT) between 2000 and 2013. Patients were grouped by transplant conditioning containing either anti‐thymocyte globulin (ATG) (n = 1283), alemtuzumab (n = 261), or no serotherapy (NS) (n = 293). The risks of chronic GvHD were significantly reduced when ATG or alemtuzumab were compared with NS (P = .021 and .003, respectively). Acute GVHD was significantly reduced in favor of alemtuzumab compared with ATG (P = .012) and NS (P < .001). By multivariate analysis, when compared with ATG, alemtuzumab was associated with a lower risk of developing acute (OR 0.262; 95% CI 0.14‐0.47; P < .001) and chronic GVHD (HR 0.58; 95% CI 0.35‐0.94; P = .027). OS was significantly better in ATG and alemtuzumab patients compared with NS (P = .010 and .025). Our data shows inclusion of serotherapy in MSD and MUD HSCT for patients with SAA reduces chronic GVHD and provides a survival advantage over patients not receiving serotherapy. Notably, alemtuzumab reduced the risk of acute and chronic GvHD compared with ATG and indicates that alemtuzumab might be the serotherapy of choice for MSD and MUD transplants for SAA

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio
    corecore