64 research outputs found

    Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    Get PDF
    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases

    How Cross‐Examination on Subjectivity and Bias Affects Jurors’ Evaluations of Forensic Science Evidence

    Get PDF
    Contextual bias has been widely discussed as a possible problem in forensic science. The trial simulation experiment reported here examined reactions of jurors at a county courthouse to cross‐examination and arguments about contextual bias in a hypothetical case. We varied whether the key prosecution witness (a forensic odontologist) was cross‐examined about the subjectivity of his interpretations and about his exposure to potentially biasing task‐irrelevant information. Jurors found the expert less credible and were less likely to convict when the expert admitted that his interpretation rested on subjective judgment, and when he admitted having been exposed to potentially biasing task‐irrelevant contextual information (relative to when these issues were not raised by the lawyers). The findings suggest, however, that forensic scientists can immunize themselves against such challenges and maximize the weight jurors give their evidence by adopting context management procedures that blind them to task‐irrelevant information

    Specific β-Tubulin Isotypes Can Functionally Enhance or Diminish Epothilone B Sensitivity in Non-Small Cell Lung Cancer Cells

    Get PDF
    Epothilones are a new class of microtubule stabilizing agents with promising preclinical and clinical activity. Their cellular target is β-tubulin and factors influencing intrinsic sensitivity to epothilones are not well understood. In this study, the functional significance of specific β-tubulin isotypes in intrinsic sensitivity to epothilone B was investigated using siRNA gene knockdown against βII-, βIII- or βIVb-tubulins in two independent non-small cell lung cancer (NSCLC) cell lines, NCI-H460 and Calu-6. Drug-treated clonogenic assays showed that sensitivity to epothilone B was not altered following knockdown of βII-tubulin in both NSCLC cell lines. In contrast, knockdown of βIII-tubulin significantly increased sensitivity to epothilone B. Interestingly, βIVb-tubulin knockdowns were significantly less sensitive to epothilone B, compared to mock- and control siRNA cells. Cell cycle analysis of βIII-tubulin knockdown cells showed a higher percentage of cell death with epothilone B concentrations as low as 0.5 nM. In contrast, βIVb-tubulin knockdown cells displayed a decrease in epothilone B-induced G2-M cell cycle accumulation compared to control siRNA cells. Importantly, βIII-tubulin knockdowns displayed a significant dose-dependent increase in the percentage of apoptotic cells upon treatment with epothilone B, as detected using caspase 3/7 activity and Annexin-V staining. Higher concentrations of epothilone B were required to induce apoptosis in the βIVb-tubulin knockdowns compared to control siRNA, highlighting a potential mechanism underlying decreased sensitivity to this agent. This study demonstrates that specific β-tubulin isotypes can influence sensitivity to epothilone B and may influence differential sensitivity to this promising new agent

    Mutation in the PTEN/MMAC1 gene in archival low grade and high grade gliomas

    Get PDF
    The PTEN gene, located on 10q23.3, has recently been described as a candidate tumour suppressor gene that may be important in the development of advanced cancers, including gliomas. We have investigated mutation in the PTEN gene by direct sequence analysis of PCR products amplified from samples microdissected from 19 low grade (WHO Grade I and II) and 27 high grade (WHO grade III and IV) archival, formalin-fixed, paraffin-embedded gliomas. Eleven genetic variants in ten tumours have been identified. Eight of these are DNA sequence changes that could affect the encoded protein and were present in 0/2 pilocytic astrocytomas, 0/2 oligoastrocytomas, 0/1 oligodendroglioma, 0/14 astrocytomas, 3/13 (23%) anaplastic astrocytomas and 5/14 (36%) glioblastomas. PTEN mutations were found exclusively in high grade gliomas; this finding was statistically significant. Only two of the PTEN genetic variants have been reported in other studies; two of the genetic changes are in codons in which mutations have not been found previously. The results of this study indicate that mutation in the PTEN gene is present only in histologically more aggressive gliomas, may be associated with the transition from low histological grade to anaplasia, but is absent from the majority of high grade gliomas. © 1999 Cancer Research Campaig

    Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Get PDF
    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol\u27s effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b,Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol response of gene networks could have important implications for future studies regarding the mechanisms and treatment of alcohol use disorders

    Forensic Gait Analysis and Recognition:Standards of Evidence Admissibility

    No full text
    Gait is one biological characteristic which has attracted strong research interest due to its potential use in human identification. Although almost two decades have passed since a forensic gait expert has testified to the identity of a perpetrator in court, the methods remain insufficiently robust, considering the recent paradigm shift witnessed in the forensic science community regarding quality of evidence. In contrast, technological advancements have taken the lead, and research into automated gait recognition has greatly surpassed forensic gait analysis in terms of the size of acquired datasets and demographic variability of participants, tested variables, and statistical evaluation of results. Despite these advantages, gait recognition presents with different problems which are yet to be resolved. Therefore, courts should treat gait evidence with caution, as they should any other form of evidence originating from disciplines without fully established codes of practice, error rates, and demonstrable applications in forensic scenarios
    corecore