202 research outputs found

    ‘Just another start to the denigration of Anzac Day’ : Evolving commemorations of Australian LGBTI military service

    Get PDF
    This article examines key historical moments in 1982, 1996, 2013 and 2015 when current or formerly serving gay military personnel have publicly asserted their membership in Australia’s Anzac legend and the lesbian, gay, bisexual, transgender and intersex (LGBTI) community. Through using the public spaces of Anzac Day and Sydney Gay and Lesbian Mardi Gras, LGBTI service organisations have strategically positioned gay service personnel as past, present or future members of Australia’s Defence and LGBTI communities. Their public demonstrations have challenged Australians’ constructs of gay men’s masculinity, the Anzac legend, digger mythology and the Australian Defence Force

    Observation of a Triangular to Square Flux Lattice Phase Transition in YBCO

    Full text link
    We have used the technique of small-angle neutron scattering to observe magnetic flux lines directly in an YBCO single crystal at fields higher than previously reported. For field directions close to perpendicular to the CuO2 planes, we find that the flux lattice structure changes smoothly from a distorted triangular co-ordination to nearly perfectly square as the magnetic induction approaches 11 T. The orientation of the square flux lattice is as expected from recent d-wave theories, but is 45 deg from that recently observed in LSCO

    Influence of primary particle density in the morphology of agglomerates

    Get PDF
    Agglomeration processes occur in many different realms of science such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary particle density in agglomerate structure using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (DLA and DLCA). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (fractal exponent, coordination number and eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate as observed in recent experimental works.Comment: 11 pages, 13 figures, PRE, to appea

    Observation of non-exponential magnetic penetration profiles in the Meissner state - A manifestation of non-local effects in superconductors

    Full text link
    Implanting fully polarized low energy muons on the nanometer scale beneath the surface of a superconductor in the Meissner state enabled us to probe the evanescent magnetic field profile B(z)(0<z<=200nm measured from the surface). All the investigated samples [Nb: kappa \simeq 0.7(2), Pb: kappa \simeq 0.6(1), Ta: kappa \simeq 0.5(2)] show clear deviations from the simple exponential B(z) expected in the London limit, thus revealing the non-local response of these superconductors. From a quantitative analysis within the Pippard and BCS models the London penetration depth lambda_L is extracted. In the case of Pb also the clean limit coherence length xi0 is obtained. Furthermore we find that the temperature dependence of the magnetic penetration depth follows closely the two-fluid expectation 1/lambda^2 \propto 1-(T/T_c)^4. While B(z) for Nb and Pb are rather well described within the Pippard and BCS models, for Ta this is only true to a lesser degree. We attribute this discrepancy to the fact that the superfluid density is decreased by approaching the surface on a length scale xi0. This effect, which is not taken self-consistently into account in the mentioned models, should be more pronounced in the lowest kappa regime consistently with our findings.Comment: accepted in PRB 14 pages, 17 figure

    Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60

    Full text link
    Muon spin rotation measurements of the magnetic field distribution in the vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60} reveal a vortex-lattice melting transition at much lower temperature than that in the fully oxygenated material. The transition is best described by a model in which adjacent layers of ``pancake'' vortices decouple in the liquid phase. Evidence is also found for a pinning-induced crossover from a solid 3D to quasi-2D vortex lattice, similar to that observed in the highly anisotropic superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file

    Combined potential and spin impurity scattering in cuprates

    Full text link
    We present a theory of combined nonmagnetic and magnetic impurity scattering in anisotropic superconductors accounting for the momentum-dependent impurity potential. Applying the model to the d-wave superconducting state, we obtain a quantitative agreement with the initial suppression of the critical temperature due to Zn and Ni substitutions as well as electron irradiation defects in the cuprates. We suggest, that the unequal pair-breaking effect of Zn and Ni may be related to a different nature of the magnetic moments induced by these impurities.Comment: 5 pages, 3 tables, RevTex, to be published in Phys. Rev.

    Supercooled vortex liquid and quantitative theory of melting of the flux line lattice in type II superconductors

    Full text link
    A metastable homogeneous state exists down to zero temperature in systems of repelling objects. Zero ''fluctuation temperature'' liquid state therefore serves as a (pseudo) ''fixed point'' controlling the properties of vortex liquid below and even around melting point. There exists Madelung constant for the liquid in the limit of zero temperature which is higher than that of the solid by an amount approximately equal to the latent heat of melting. This picture is supported by an exactly solvable large NN Ginzburg - Landau model in magnetic field. Based on this understanding we apply Borel - Pade resummation technique to develop a theory of the vortex liquid in type II superconductors. Applicability of the effective lowest Landau level model is discussed and corrections due to higher levels is calculated. Combined with previous quantitative description of the vortex solid the melting line is located. Magnetization, entropy and specific heat jumps along it are calculated. The magnetization of liquid is larger than that of solid by 1.8% 1.8% irrespective of the melting temperature. We compare the result with experiments on high TcT_{c} cuprates YBa2Cu3O7YBa_{2}Cu_{3}O_{7}, DyBCODyBCO, low Tc% T_{c} material (K,Ba)BiO3(K,Ba)BiO_{3} and with Monte Carlo simulations.Comment: 28 pages and 4 figures. Enlarged version of paper cond-mat/0107281 with many new content

    Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor

    Full text link
    We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi liquid superconductor. We obtain analytical results for the Ginzburg-Landau functional in the critical region around the superconducting phase transition, T <= T_c, in two special limits of the model, i.e., the spin-charge separation case and the anomalous Fermi liquid case. For both cases, in the presence of a mass renormalization factor, we derived the form and the specific dependence of the coherence length, penetration depth, specific heat jump at the critical point, and the magnetic upper critical field. For both limits the obtained results reduce to the usual BCS results for a two dimensional s-wave superconductor. We compare our results with recent and relevant theoretical work. The results for a d--wave symmetry order parameter do not change qualitatively the results presented in this paper. Only numerical factors appear additionally in our expressions.Comment: accepted for publication in Physical Review
    • …
    corecore