15 research outputs found

    Improved thermal sensitivity using virtual monochromatic imaging derived from photon counting detector CT data sets: ex vivo results of CT-guided cryoablation in porcine liver

    Get PDF
    Purpose To investigate differences in thermal sensitivity of virtual monoenergetic imaging (VMI) series generated from photon-counting detector (PCD) CT data sets, regarding their use to improve discrimination of the ablation zone during percutaneous cryoablation. Materials and Methods CT-guided cryoablation was performed using an ex vivo model of porcine liver on a PCD-CT system. The ablation zone was imaged continuously for 8 min by acquiring a CT scan every 5 s. Tissue temperature was measured using fiberoptic temperature probes placed parallel to the cryoprobe. CT-values and noise were measured at the tip of the temperature probes on each scan and on VMI series from 40 to 130 keV. Correlation of CT-values and temperature was assessed using linear regression analyses. Results For the whole temperature range of [− 40, + 20] °C, we observed a linear correlation between CT-values and temperature in reference 70 keV images (R2 = 0.60, p < 0.001) with a thermal sensitivity of 1.4HU/°C. For the most dynamic range of [− 15, + 20] °C, the sensitivity increased to 2.4HU/°C (R2 = 0.50, p < 0.001). Using VMI reconstructions, the thermal sensitivity increased from 1.4 HU/°C at 70 keV to 1.5, 1.7 and 2.0HU/°C at 60, 50 and 40 keV, respectively (range [− 40, + 20] °C). For [− 15, + 20]°C, the thermal sensitivity increased from 2.4HU/°C at 70 keV to 2.5, 2.6 and 2.7HU/°C at 60, 50 and 40 keV, respectively. Both CT-values and noise also increased with decreasing VMI keV-levels. Conclusion During CT-guided cryoablation of porcine liver, low-keV VMI reconstructions derived from PCD-CT data sets exhibit improved thermal sensitivity being highest between + 20 and − 15 °C

    Assessment of quantitative information for radiation therapy at a first-generation clinical photon-counting computed tomography scanner

    Get PDF
    As one of the latest developments in X-ray computed tomography (CT), photon-counting technology allows spectral detection, demonstrating considerable advantages as compared to conventional CT. In this study, we investigated the use of a first-generation clinical photon-counting computed tomography (PCCT) scanner and estimated proton relative (to water) stopping power (RSP) of tissue-equivalent materials from virtual monoenergetic reconstructions provided by the scanner. A set of calibration and evaluation tissue-equivalent inserts were scanned at 120 kVp. Maps of relative electron density (RED) and effective atomic number (EAN) were estimated from the reconstructed virtual monoenergetic images (VMI) using an approach previously applied to a spectral CT scanner with dual-layer detector technology, which allows direct calculation of RSP using the Bethe-Bloch formula. The accuracy of RED, EAN, and RSP was evaluated by root-mean-square errors (RMSE) averaged over the phantom inserts. The reference RSP values were obtained experimentally using a water column in an ion beam. For RED and EAN, the reference values were calculated based on the mass density and the chemical composition of the inserts. Different combinations of low- and high-energy VMIs were investigated in this study, ranging from 40 to 190 keV. The overall lowest error was achieved using VMIs at 60 and 180 keV, with an RSP accuracy of 1.27% and 0.71% for the calibration and the evaluation phantom, respectively

    Optimal conspicuity of pancreatic ductal adenocarcinoma in virtual monochromatic imaging reconstructions on a photon-counting detector CT: comparison to conventional MDCT

    Get PDF
    Purpose To analyze the conspicuity of pancreatic ductal adenocarcinoma (PDAC) in virtual monoenergetic images (VMI) on a novel photon-counting detector CT (PCD-CT) in comparison to energy-integrating CT (EID-CT). Methods Inclusion criteria comprised initial diagnosis of PDAC (reference standard: histopathological analysis) and standardized contrast-enhanced CT imaging either on an EID-CT or a PCD-CT. Patients were excluded due to different histopathological diagnosis or missing tumor delineation on CT. On the PCD-CT, 40–190 keV VMI reconstructions were generated. Image noise, tumor-to-pancreas ratio (TPR) and contrast-to-noise ratio (CNR) were analyzed by ROI-based measurements in arterial and portal venous contrast phase. Two board-certified radiologist evaluated image quality and tumor delineation at both, EID-CT and PCD-CT (40 and 70 keV). Results Thirty-eight patients (mean age 70.4 years ± 10.3 [range 45–91], 27 males; PCD-CT: n=19, EID-CT: n=19) were retrospectively included. On the PCD-CT, tumor conspicuity (reflected by low TPR and high CNR) was significantly improved at low-energy VMI series (≀ 70 keV compared to > 70 keV), both in arterial and in portal venous contrast phase (P < 0.001), reaching the maximum at 40 keV. Comparison between PCD-CT and EID-CT showed significantly higher CNR on the PCD-CT in portal venous contrast phase at < 70 keV (P < 0.016). On the PCD-CT, tumor conspicuity was improved in portal venous contrast phase compared to arterial contrast phase especially at the lower end of the VMI spectrum (≀ 70 keV). Qualitative analysis revealed that tumor delineation is improved in 40 keV reconstructions compared to 70 keV reconstructions on a PCD-CT. Conclusion PCD-CT VMI reconstructions (≀ 70 keV) showed significantly improved conspicuity of PDAC in quantitative and qualitative analysis in both, arterial and portal venous contrast phase, compared to EID-CT, which may be important for early detection of tumor tissue in clinical routine. Tumor delineation was superior in portal venous contrast phase compared to arterial contrast phase

    Virtual non-contrast reconstructions of photon-counting detector CT angiography datasets as substitutes for true non-contrast acquisitions in patients after EVAR—performance of a novel calcium-preserving reconstruction algorithm

    Get PDF
    The purpose of this study was to evaluate virtual-non contrast reconstructions of Photon-Counting Detector (PCD) CT-angiography datasets using a novel calcium-preserving algorithm (VNC(PC)) vs. the standard algorithm (VNC(Conv)) for their potential to replace unenhanced acquisitions (TNC) in patients after endovascular aneurysm repair (EVAR). 20 EVAR patients who had undergone CTA (unenhanced and arterial phase) on a novel PCD-CT were included. VNC(Conv)- and VNC(PC)-series were derived from CTA-datasets and intraluminal signal and noise compared. Three readers evaluated image quality, contrast removal, and removal of calcifications/stent parts and assessed all VNC-series for their suitability to replace TNC-series. Image noise was higher in VNC- than in TNC-series (18.6 ± 5.3 HU, 16.7 ± 7.1 HU, and 14.9 ± 7.1 HU for VNC(Conv)-, VNC(PC)-, and TNC-series, p = 0.006). Subjective image quality was substantially higher in VNC(PC)- than VNC(Conv)-series (4.2 ± 0.9 vs. 2.5 ± 0.6; p < 0.001). Aortic contrast removal was complete in all VNC-series. Unlike in VNC(Conv)-reconstructions, only minuscule parts of stents or calcifications were erroneously subtracted in VNC(PC)-reconstructions. Readers considered 95% of VNC(PC)-series fully or mostly suited to replace TNC-series; for VNC(Conv)-reconstructions, however, only 75% were considered mostly (and none fully) suited for TNC-replacement. VNC(PC)-reconstructions of PCD-CT-angiography datasets have excellent image quality with complete contrast removal and only minimal erroneous subtractions of stent parts/calcifications. They could replace TNC-series in almost all cases

    Optimal conspicuity of liver metastases in virtual monochromatic imaging reconstructions on a novel photon-counting detector CT—effect of keV settings and BMI

    Get PDF
    In dual-energy CT datasets, the conspicuity of liver metastases can be enhanced by virtual monoenergetic imaging (VMI) reconstructions at low keV levels. Our study investigated whether this effect can be reproduced in photon-counting detector CT (PCD-CT) datasets. We analyzed 100 patients with liver metastases who had undergone contrast-enhanced CT of the abdomen on a PCD-CT (n = 50) or energy-integrating detector CT (EID-CT, single-energy mode, n = 50). PCD-VMI-reconstructions were performed at various keV levels. Identical regions of interest were positioned in metastases, normal liver, and other defined locations assessing image noise, tumor-to-liver ratio (TLR), and contrast-to-noise ratio (CNR). Patients were compared inter-individually. Subgroup analyses were performed according to BMI. On the PCD-CT, noise and CNR peaked at the low end of the keV spectrum. In comparison with the EID-CT, PCD-VMI-reconstructions exhibited lower image noise (at 70 keV) but higher CNR (for ≀70 keV), despite similar CTDIs. Comparing high- and low-BMI patients, CTDI-upregulation was more modest for the PCD-CT but still resulted in similar noise levels and preserved CNR, unlike the EID-CT. In conclusion, PCD-CT VMIs in oncologic patients demonstrated reduced image noise–compared to a standard EID-CT–and improved conspicuity of hypovascularized liver metastases at low keV values. Patients with higher BMIs especially benefited from constant image noise and preservation of lesion conspicuity, despite a more moderate upregulation of CTDI

    Multiphase photon counting detector CT data sets – which combination of contrast phase and virtual non-contrast algorithm is best suited to replace true non-contrast series in the assessment of active bleeding?

    No full text
    Purpose Aim of this study was to determine which virtual non-contrast (VNC) reconstruction algorithm, applied to which contrast phase of computed tomography angiography, best matches true non-contrast (TNC) images in the assessment of active bleeding. Method Patients who underwent a triphasic scan (pre-contrast, arterial, portal venous contrast) on a photon-counting detector CT (PCD-CT) (120 kV, image quality level 68) with suspected active (tumor, postoperative, spontaneous or other) bleeding were retrospectively included in this study. Conventional (VNCConv) and a calcium-preserving VNC algorithm (VNCPC) were derived from both arterial (art) and portal venous (pv) contrast scans, and analyzed quantitatively and qualitatively by two independent and blinded raters. Results 40 patients (22 female, mean age 76 years) were included. Measurements of CT values showed significant albeit small differences between TNC and VNC for most analyzed tissue regions without clear superiority of a VNC algorithm or contrast phase (e.g. ΔHU fat TNC to VNCPCpv 3.1 HU). However, qualitative analysis showed a preference to VNCPCpv in terms of image quality (on a 5-point Likert scale VNCConvart = 3.5 ± 0.8, VNCPCart = 3.7 ± 0.7, VNCConvpv = 3.7 ± 0.7, VNCPCpv = 3.8 ± 0.7) and residual calcium contrast (VNCConvart = 3.0 ± 0.8, VNCPCart = 3.5 ± 0.7, VNCConvpv = 3.6 ± 0.7, VNCPCpv = 3.9 ± 0.6). Conclusions When multiple post-contrast phases are available, VNCPC series based on portal venous phase are the most suitable replacement for an additional pre-contrast scan, with the prospect of a significant reduction in patient radiation dose

    Image Characteristics of Virtual Non-Contrast Series Derived from Photon-Counting Detector Coronary CT Angiography—Prerequisites for and Feasibility of Calcium Quantification

    No full text
    In photon-counting detector CT (PCD-CT), coronary artery calcium scoring (CACS) can be performed using virtual non-contrast (VNC) series derived from coronary CT angiography (CCTA) datasets. Our study analyzed image characteristics of VNC series in terms of the efficacy of virtual iodine “removal” and image noise to determine whether the prerequisites for calcium quantification were satisfied. We analyzed 38 patients who had undergone non-enhanced CT followed by CCTA on a PCD-CT. VNC reconstructions were performed at different settings and algorithms (conventional VNCConv; PureCalcium VNCPC). Virtual iodine “removal” was investigated by comparing histograms of heart volumes. Noise was assessed within the left ventricular cavity. Calcium was quantified on the true non-contrast (TNC) and all VNC series. The histograms were comparable for TNC and all VNC. Image noise between TNC and all VNC differed slightly but significantly. VNCConv CACS showed a significant underestimation regardless of the reconstruction setting, while VNCPC CACS were comparable to TNC. Correlations between TNC and VNC were excellent, with a higher predictive accuracy for VNCPC. In conclusion, the iodine contrast can be effectively subtracted from CCTA datasets. The remaining VNC series satisfy the requirements for CACS, yielding results with excellent correlation compared to TNC-based CACS and high predicting accuracy
    corecore