25 research outputs found

    DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination

    Get PDF
    Recently, it was reported that 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD), a common pharmaceutical additive, can act as a vaccine adjuvant to enhance protective type-2 immunogenicity to co-administered seasonal influenza split vaccine by inducing host-derived damage-associated molecular patterns (DAMPs). However, like most other DAMP-inducing adjuvants such as aluminum hydroxide (Alum), HP-β-CyD may not be sufficient for the induction of protective type-1 (cellular) immune responses, thereby leaving room for improvement. Here, we demonstrate that a combination of HP-β-CyD with a humanized TLR9 agonist, K3 CpG-ODN, a potent pathogen-associated molecular pattern (PAMP), enhanced the protective efficacy of the co-administered influenza split vaccine by inducing antigen-specific type-2 and type-1 immune responses, respectively. Moreover, substantial antigen-specific IgE induction by HP-β-CyD, which can cause an allergic response to immunized antigen was completely suppressed by the addition of K3 CpG-ODN. Furthermore, HP-β-CyD- and K3 CpG-ODN-adjuvanted influenza split vaccination protected the mice against lethal challenge with high doses of heterologous influenza virus, which could not be protected against by single adjuvant vaccines. Further experiments using gene deficient mice revealed the unique immunological mechanism of action in vivo, where type-2 and type-1 immune responses enhanced by the combined adjuvants were dependent on TBK1 and TLR9, respectively, indicating their parallel signaling pathways. Finally, the analysis of immune responses in the draining lymph node suggested that HP-β-CyD promotes the uptake of K3 CpG-ODN by plasmacytoid dendritic cells and B cells, which may contributes to the activation of these cells and enhanced production of IgG2c. Taken together, the results above may offer potential clinical applications for the combination of DAMP-inducing adjuvant and PAMP adjuvant to improve vaccine immunogenicity and efficacy by enhancing both type-2 and type-1 immune responses in a parallel manner

    Hydroxypropyl-β-cyclodextrin Enhances Oral Absorption of Silymarin Nanoparticles Prepared Using PureNano™ Continuous Crystallizer

    No full text
    The oral bioavailability of drugs is limited by factors such as poor membrane permeability, low solubility, and low dissolution rate. Silymarin (SLM) is a health-food active ingredient that is good for immunosuppression and tumor suppression. However, obtaining a good oral bioavailability is difficult owing to its poor solubility and low dissolution ability. To overcome these concerns, we previously prepared SLM nanoparticles (NPs) using the high-pressure crystallization method (PureNanoTM) and freeze-dried them with erythritol (Ery) or hydroxypropyl-β-CyD (HP-β-CyD) as a water-soluble dispersion stabilizer. In the present study, we investigated the mechanism underlying the improved absorption of SLM/hypromellose (HPMC)/HP-β-CyD NPs after oral administration. The SLM/HPMC nano-suspension prepared using PureNanoTM exhibited a narrow size distribution. The size of the SLM/HPMC/HP-β-CyD NPs was approximately 250 nm after hydration. The SLM/HPMC/HP-β-CyD NPs were rapidly dissolved, and demonstrated a high solubility under supersaturated conditions. Additionally, they exhibited good wettability and their membrane permeability was improved compared with that of SLM original powder. These results suggest that the formulation of SLM NPs using PureNanoTM and freeze-drying with HP-β-CyD improves the absorption of SLM after oral administration by enhancing solubility, wettability, and membrane permeability

    Prediction of effects of punch shapes on tableting failure by using a multi-functional single-punch tablet press

    No full text
    We previously determined “Tableting properties” by using a multi-functional single-punch tablet press (GTP-1). We proposed plotting “Compactability” on the x-axis against “Manufacturability” on the y-axis to allow visual evaluation of “Tableting properties”. Various types of tableting failure occur in commercial drug production and are influenced by the amount of lubricant used and the shape of the punch. We used the GTP-1 to measure “Tableting properties” with different amounts of lubricant and compared the results with those of tableting on a commercial rotary tableting machine. Tablets compressed with a small amount of lubricant showed bad “Manufacturability”, leading to sticking of powder on punches. We also tested various punch shapes. The GTP-1 correctly predicted the actual tableting results for all punch shapes. With punches that were more likely to cause tableting failure, our system predicted the effects of lubricant quantity in the tablet formulation and the occurrence of sticking in the rotary tableting machine

    Formulation design of granules prepared by wet granulation method using a multi-functional single-punch tablet press to avoid tableting failures

    No full text
    We previously determined “Tableting properties” by using a multi-functional single-punch tablet press (GTP-1). We plotted “Compactability” on the x-axis against “Manufacturability” on the y-axis to allow visual evaluation of “Tableting properties”. Here, we examined whether this evaluation method can be used in the formulation design of tablets prepared by wet granulation. We used the GTP-1 to measure “Tableting properties” with different amounts of binder, disintegrant, and lubricant, and compared the results with those of tableting on a commercial rotary tableting machine. Tableting failures (capping and binding in particular) occurred when samples that had been evaluated as having poor “Compactability” or “Manufacturability” on the GTP-1 were compressed on the rotary tableting machine. Thus, our evaluation method predicted tableting failure at the commercial scale. The method will prove useful for scaling up production. Keywords: tableting, formulation design, wet granulation, capping, binding, single-punch tablet pres
    corecore