8 research outputs found

    胃癌におけるUc.160+の発現・機能解析

    Get PDF
    内容の要旨, 審査の要旨広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora

    Non-coding RNAs are promising targets for stem cell-based cancer therapy

    No full text
    The term ânon-coding RNAâ (ncRNA) is generally used to indicate RNA that does not encode a protein and includes several classes of RNAs, such as microRNA and long non-coding RNA. Several lines of evidence suggest that ncRNAs appear to be involved in a hidden layer of biological procedures that control various levels of gene expression in physiology and development including stem cell biology. Stem cells have recently constituted a revolution in regenerative medicine by providing the possibility of generating suitable cell types for therapeutic use. Here, we review the recent progress that has been made in elaborating the interaction between ncRNAs and tissue/cancer stem cells, discuss related technical and biological challenges, and highlight plausible solutions to surmount these difficulties. This review particularly emphasises the involvement of ncRNAs in stem cell biology and in vivo modulation to treat and cure specific pathological disorders especially in cancer. We believe that a better understanding of the molecular machinery of ncRNAs as related to pluripotency, cellular reprogramming, and lineage-specific differentiation is essential for progress of cancer therapy. Keywords: Stem cell-based therapy, Non-coding RNA, Transcribed ultraconserved regio

    Uc.416 + A promotes epithelial-to-mesenchymal transition through miR-153 in renal cell carcinoma

    No full text
    Abstract Background The transcribed ultraconserved regions (T-UCRs) are a novel class of non-coding RNAs that are absolutely conserved across species and are involved in carcinogenesis in some cancers. However, the expression and biological role of T-UCRs in renal cell carcinoma (RCC) remain poorly understood. This study aimed to examine the expression and functional role of Uc.416 + A and analyze the association between Uc.416 + A and epithelial-to-mesenchymal transition in RCC. Methods Expression of Uc.416 + A in 35 RCC tissues, corresponding normal kidney tissues and 13 types of normal tissue samples was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We performed a cell growth and migration assay in RCC cell line 786-O transfected with negative control and siRNA for Uc.416 + A. We evaluated the relation between Uc.416 + A and miR-153, which has a complimentary site of Uc.416 + A. Results qRT-PCR analysis revealed that the expression of Uc.416 + A was higher in RCC tissues than that in corresponding normal kidney tissues. Inhibition of Uc.416 + A reduced cell growth and cell migration activity. There was an inverse correlation between Uc.416 + A and miR-153. Western blot analysis showed Uc.416 + A modulated E-cadherin, vimentin and snail. The expression of Uc.416 + A was positively associated with the expression of SNAI1, VIM and inversely associated with the expression of CDH1. Conclusions The expression of Uc.416 + A was upregulated in RCC and especially in RCC tissues with sarcomatoid change. Uc.416 + A promoted epithelial-to-mesenchymal transition through miR-153. These results suggest that Uc.416 + A may be a promising therapeutic target
    corecore