3 research outputs found

    Iodination on tyrosine residues during oxidation with sodium periodate in solid phase extraction of N-linked glycopeptides

    No full text
    Solid-phase extraction of N-linked glycopeptides (SPEG) using hydrazide-modified supports has become a common sample preparation procedure in glycoproteomic experiments. We demonstrate that iodination of tyrosine residues occur in SPEG as a side reaction during an oxidation step with sodium periodate. MS/MS analysis of oxidized bovine serum albumin and carbonic anhydrase digests revealed a characteristic shift of m/z 125.9 on all y and b fragment ions containing the modified tyrosine residues. Selected reaction monitoring (SRM) measurements showed that the peak intensity from of the iodinated peptides increased during the course of oxidation. After an hour of oxidation, SRM analysis revealed that the strongest signal from an iodinated peptide was approximately one-tenth of the intensity of the corresponding unmodified peptide. Iodinated tyrosine residues were also identified in serum samples subjected to SPEG and analyzed by LC-ESI-MS/MS. We recommend assessing this side reaction by including iodotyrosine as a variable modification when performing database searches on SPEG experiments. For SRM-based acquisitions, we encourage the avoidance of tyrosine-containing glycopeptides or, if this is not practical, monitoring transitions that contain the potential modified iodinated tyrosine residue to monitor the presence of the iodinated form of the glycopeptide.Peer reviewed: YesNRC publication: Ye

    Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients.

    No full text
    The isolation and analysis of circulating tumor cells (CTC) has the potential to provide minimally invasive diagnostic, prognostic and predictive information. Widespread clinical implementation of CTC analysis has been hampered by a lack of comparative investigation between different analytic methodologies in clinically relevant settings. The objective of this study was to evaluate four different CTC isolation techniques-those that rely on surface antigen expression (EpCAM or CD45 using DynaBeads® or EasySep™ systems) or the biophysical properties (RosetteSep™ or ScreenCell®) of CTCs. These were evaluated using cultured cells in order to calculate isolation efficiency at various levels including; inter-assay and inter-operator variability, protocol complexity and turn-around time. All four techniques were adequate at levels above 100 cells/mL which is commonly used for the evaluation of new isolation techniques. Only the RosetteSep™ and ScreenCell® techniques were found to provide adequate sensitivity at a level of 10 cells/mL. These techniques were then applied to the isolation and analysis of circulating tumor cells blood drawn from metastatic breast cancer patients where CTCs were detected in 54% (15/28) of MBC patients using the RosetteSep™ and 75% (6/8) with ScreenCell®. Overall, the ScreenCell® method had better sensitivity
    corecore