1 research outputs found

    Improved precision on the experimental E0 decay branching ratio of the Hoyle state

    Get PDF
    Background: Stellar carbon synthesis occurs exclusively via the 3α process, in which three α particles fuse to form 12C in the excited Hoyle state, followed by electromagnetic decay to the ground state. The Hoyle state is above the α threshold, and the rate of stellar carbon production depends on the radiative width of this state. The radiative width cannot be measured directly, and must instead be deduced by combining three separately measured quantities. One of these quantities is the E0 decay branching ratio of the Hoyle state, and the current 10% uncertainty on the radiative width stems mainly from the uncertainty on this ratio. The rate of the 3α process is an important input parameter in astrophysical calculations on stellar evolution, and a high precision is imperative to constrain the possible outcomes of astrophysical models.The project was supported by the Australian Research Council Discovery Grants No. DP140102986, No. DP170101673, and No. DP170102423. Operation of the ANU Heavy Ion Accelerator Facility is supported by the NCRIS HIA capability. The support from technical staff for the development of the pair spectrometer, as well as during the long experimental runs, is greatly appreciated. This work was partially supported by the International Joint Research Promotion Program of Osaka University and JSPS KAKENHI Grant No. JP 17H02893, the Natural Sciences and Engineering Research Council of Canada, the National Research Foundation (NRF), South Africa, under Grants No. 93533 and No. 118645
    corecore