4 research outputs found

    Recent Insights into the Contribution of the Changing Hypertrophic Chondrocyte Phenotype in the Development and Progression of Osteoarthritis

    No full text
    Osteoarthritis (OA) is an extremely prevalent age-related condition. The economic and societal burden due to the cost of symptomatic treatment, inability to work, joint replacement, and rehabilitation is huge and increasing. Currently, there are no effective medical therapies that delay or reverse the pathological manifestations of OA. Current treatment options are, without exception, focused on slowing down progression of the disease to postpone total joint replacement surgery for as long as possible and keeping the associated pain and joint immobility manageable. Alterations in the articular cartilage chondrocyte phenotype might be fundamental in the pathological mechanisms of OA development. In many ways, the changing chondrocyte phenotype in osteoarthritic cartilage resembles the process of endochondral ossification as seen, for instance, in developing growth plates. However, the relative contribution of endochondral ossification to the changing chondrocyte phenotype in the development and progression of OA remains poorly described. In this review, we will discuss the current knowledge regarding the cartilage endochondral phenotypic changes occurring during OA development and progression, as well as the molecular and environmental effectors driving these changes. Understanding how these molecular mechanisms determine the chondrocyte cell fate in OA will be essential in enabling cartilage regenerative approaches in future treatments of OA

    BMP7 increases protein synthesis in SW1353 cells and determines rRNA levels in a NKX3-2-dependent manner

    No full text
    BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype

    BMP7 increases protein synthesis in SW1353 cells and determines rRNA levels in a NKX3-2-dependent manner

    No full text
    BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype
    corecore