607 research outputs found

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Finding the True Frequent Itemsets

    Full text link
    Frequent Itemsets (FIs) mining is a fundamental primitive in data mining. It requires to identify all itemsets appearing in at least a fraction θ\theta of a transactional dataset D\mathcal{D}. Often though, the ultimate goal of mining D\mathcal{D} is not an analysis of the dataset \emph{per se}, but the understanding of the underlying process that generated it. Specifically, in many applications D\mathcal{D} is a collection of samples obtained from an unknown probability distribution π\pi on transactions, and by extracting the FIs in D\mathcal{D} one attempts to infer itemsets that are frequently (i.e., with probability at least θ\theta) generated by π\pi, which we call the True Frequent Itemsets (TFIs). Due to the inherently stochastic nature of the generative process, the set of FIs is only a rough approximation of the set of TFIs, as it often contains a huge number of \emph{false positives}, i.e., spurious itemsets that are not among the TFIs. In this work we design and analyze an algorithm to identify a threshold θ^\hat{\theta} such that the collection of itemsets with frequency at least θ^\hat{\theta} in D\mathcal{D} contains only TFIs with probability at least 1−δ1-\delta, for some user-specified δ\delta. Our method uses results from statistical learning theory involving the (empirical) VC-dimension of the problem at hand. This allows us to identify almost all the TFIs without including any false positive. We also experimentally compare our method with the direct mining of D\mathcal{D} at frequency θ\theta and with techniques based on widely-used standard bounds (i.e., the Chernoff bounds) of the binomial distribution, and show that our algorithm outperforms these methods and achieves even better results than what is guaranteed by the theoretical analysis.Comment: 13 pages, Extended version of work appeared in SIAM International Conference on Data Mining, 201
    • …
    corecore