48 research outputs found

    Free-Floating planet Mass Function from MOA-II 9-year survey towards the Galactic Bulge

    Full text link
    We present the first measurement of the mass function of free-floating planets (FFP) or very wide orbit planets down to an Earth mass, from the MOA-II microlensing survey in 2006-2014. Six events are likely to be due to planets with Einstein radius crossing times, tE<0.5t_{\rm E}<0.5days, and the shortest has tE=0.057±0.016t_{\rm E} = 0.057\pm 0.016days and an angular Einstein radius of ΞE=0.90±0.14ÎŒ\theta_{\rm E} = 0.90\pm 0.14\muas. We measure the detection efficiency depending on both tEt_{\rm E} and ΞE\theta_{\rm E} with image level simulations for the first time. These short events are well modeled by a power-law mass function, dN4/dlog⁥M=(2.18−1.40+0.52)×(M/8 M⊕)−α4dN_4/d\log M = (2.18^{+0.52}_{-1.40})\times (M/8\,M_\oplus)^{-\alpha_4} dex−1^{-1}star−1^{-1} with α4=0.96−0.27+0.47\alpha_4 = 0.96^{+0.47}_{-0.27} for M/M⊙<0.02M/M_\odot < 0.02. This implies a total of f=21−13+23f= 21^{+23}_{-13} FFP or very wide orbit planets of mass 0.33<M/M⊕<66600.33<M/M_\oplus < 6660 per star, with a total mass of 80−47+73M⊕80^{+73}_{-47} M_\oplus per star. The number of FFPs is 19−13+2319_{-13}^{+23} times the number of planets in wide orbits (beyond the snow line), while the total masses are of the same order. This suggests that the FFPs have been ejected from bound planetary systems that may have had an initial mass function with a power-law index of α∌0.9\alpha\sim 0.9, which would imply a total mass of 171−52+80M⊕171_{-52}^{+80} M_\oplus star−1^{-1}. This model predicts that Roman Space Telescope will detect 988−566+1848988^{+1848}_{-566} FFPs with masses down to that of Mars (including 575−424+1733575^{+1733}_{ -424} with 0.1≀M/M⊕≀10.1 \le M/M_\oplus \le 1). The Sumi(2011) large Jupiter-mass FFP population is excluded.Comment: 17 pages, 7 figures, accepted for publication in A

    A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System

    Get PDF
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of qp=(1.26±0.19)×10−3q_p = (1.26\pm 0.19) \times 10^{-3} to the primary. The mass ratio of the two stars is qs=0.289±0.011q_s = 0.289\pm 0.011, and their projected separation is ss=2.1±0.7 s_s = 2.1\pm 0.7\,AU, while the projected separation of the planet from the primary is sp=2.2±0.8 s_p = 2.2\pm 0.8\,AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of ML1=0.35−0.20+0.30 M⊙M_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot, ML2=0.10−0.06+0.09 M⊙M_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot, and mp=144−82+126 M⊕m_p = 144^{+126}_{-82}\,M_\oplus, and the KK-band magnitude of the combined brightness of the host stars is KL=19.7−1.0+0.7K_L = 19.7^{+0.7}_{-1.0}. The separation between the lens and source system will be ∌90 \sim 90\,mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations

    A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System

    Get PDF
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of q_p = (1.26 ± 0.19) × 10⁻³ to the primary. The mass ratio of the two stars is q_s = 0.289 ± 0.011, and their projected separation is s_s = 2.1 ± 0.7 au, while the projected separation of the planet from the primary is s_p = 2.2 ± 0.8 au. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than the projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of, M_(L1) = 0.35^(+0.30)_(−0.20) M⊙, M_(L2) = 0.10^(+0.09)_(−0.06) M⊙, and m_p = 144^(+126)_(−82) M⊕, and the K-band magnitude of the combined brightness of the host stars is K_L = 19.7^(+0.7)_(−1.0). The separation between the lens and source system will be ~90 mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations

    MOA-2020-BLG-135Lb: A New Neptune-class Planet for the Extended MOA-II Exoplanet Microlens Statistical Analysis

    Full text link
    We report the light-curve analysis for the event MOA-2020-BLG-135, which leads to the discovery of a new Neptune-class planet, MOA-2020-BLG-135Lb. With a derived mass ratio of q=1.52−0.31+0.39×10−4q=1.52_{-0.31}^{+0.39} \times 10^{-4} and separation s≈1s\approx1, the planet lies exactly at the break and likely peak of the exoplanet mass-ratio function derived by the MOA collaboration (Suzuki et al. 2016). We estimate the properties of the lens system based on a Galactic model and considering two different Bayesian priors: one assuming that all stars have an equal planet-hosting probability and the other that planets are more likely to orbit more massive stars. With a uniform host mass prior, we predict that the lens system is likely to be a planet of mass mplanet=11.3−6.9+19.2M⊕m_\mathrm{planet}=11.3_{-6.9}^{+19.2} M_\oplus and a host star of mass Mhost=0.23−0.14+0.39M⊙M_\mathrm{host}=0.23_{-0.14}^{+0.39} M_\odot, located at a distance DL=7.9−1.0+1.0  kpcD_L=7.9_{-1.0}^{+1.0}\;\mathrm{kpc}. With a prior that holds that planet occurrence scales in proportion to the host star mass, the estimated lens system properties are mplanet=25−15+22M⊕m_\mathrm{planet}=25_{-15}^{+22} M_\oplus, Mhost=0.53−0.32+0.42M⊙M_\mathrm{host}=0.53_{-0.32}^{+0.42} M_\odot, and DL=8.3−1.0+0.9  kpcD_L=8.3_{-1.0}^{+0.9}\; \mathrm{kpc}. This planet qualifies for inclusion in the extended MOA-II exoplanet microlens sample.Comment: 22 pages, 6 figures, 4 tables, submitted to the AAS Journal

    Brown dwarf companions in binaries detected from the 2021 season high-cadence microlensing surveys

    Full text link
    As a part of the project aiming to build a homogeneous sample of binary-lens (2L1S) events containing brown-dwarf (BD) companions, we investigate the 2021 season microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. For this purpose, we first identify 2L1S events by conducting systematic analyses of anomalous lensing events. We then select candidate BD-companion events by applying the criterion that the mass ratio between the lens components is less than qth∌0.1q_{\rm th}\sim 0.1. From this procedure, we find four binary-lens events including KMT-2021-BLG-0588, KMT-2021-BLG-1110, KMT-2021-BLG-1643, and KMT-2021-BLG-1770, for which the estimated mass ratios are q∌0.10q\sim 0.10, 0.07, 0.08, and 0.15, respectively. The event KMT-2021-BLG-1770 is selected as a candidate despite the fact that the mass ratio is slightly greater than qthq_{\rm th} because the lens mass expected from the measured short time scale of the event, tE∌7.6t_{\rm E}\sim 7.6~days, is small. From the Bayesian analyses, we estimate that the primary and companion masses are (M1/M⊙,M2/M⊙)=(0.54−0.24+0.31,0.053−0.023+0.031)(M_1/M_\odot, M_2/M_\odot)= (0.54^{+0.31}_{-0.24}, 0.053^{+0.031}_{-0.023}) for KMT-2021-BLG-0588L, (0.74−0.35+0.27,0.055−0.026+0.020)(0.74^{+0.27}_{-0.35}, 0.055^{+0.020}_{-0.026}) for KMT-2021-BLG-1110L, (0.73−0.17+0.24,0.061−0.014+0.020)(0.73^{+0.24}_{-0.17}, 0.061^{+0.020}_{-0.014}) for KMT-2021-BLG-1643L, and (0.13−0.07+0.18,0.020−0.011+0.028)(0.13^{+0.18}_{-0.07}, 0.020^{+0.028}_{-0.011}) for KMT-2021-BLG-1770L. It is estimated that the probabilities of the lens companions being in the BD mass range are 82\%, 85\%, 91\%, and 59\% for the individual events. For confirming the BD nature of the lens companions found in this and previous works by directly imaging the lenses from future high-resolution adaptive-optics (AO) followup observations, we provide the lens-source separations expected in 2030, which is an approximate year of the first AO light on 30~m class telescopes.Comment: 11 pages, 10 tables, 8 figure

    KMT-2021-BLG-1077L: The fifth confirmed multiplanetary system detected by microlensing

    Full text link
    The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. We test various models in combination with several interpretations. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ∌1.56×10−3\sim 1.56 \times 10^{-3} and ∌1.75×10−3\sim 1.75 \times 10^{-3}, which correspond to ∌1.6\sim 1.6 and ∌1.8\sim 1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with a mass of Mh=0.14−0.07+0.19 M⊙M_{\rm h} = 0.14^{+0.19}_{-0.07}~M_\odot, and it hosts two gas giant planets with masses of Mp1=0.22−0.12+0.31 MJM_{\rm p_1}=0.22^{+0.31}_{-0.12}~M_{\rm J} and Mp2=0.25−0.13+0.35 MJM_{\rm p_2}=0.25^{+0.35}_{-0.13}~M_{\rm J}. The planets lie beyond the snow line of the host with projected separations of a⊄,p1=1.26−1.08+1.41 AUa_{\perp, {\rm p}_1}=1.26^{+1.41}_{-1.08}~{\rm AU} and a⊄,p2=0.93−0.80+1.05 AUa_{\perp, {\rm p}_2}=0.93^{+1.05}_{-0.80}~{\rm AU}. The planetary system resides in the Galactic bulge at a distance of DL=8.24−1.16+1.02 kpcD_{\rm L}=8.24^{+1.02}_{-1.16}~{\rm kpc}. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.Comment: 9 pages, 8 figure

    KMT-2021-BLG-1150Lb: Microlensing planet detected through a densely covered planetary-caustic signal

    Full text link
    Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work, we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, for which the light curve exhibits a densely and continuously covered short-term anomaly. In order to identify degenerate solutions, we thoroughly investigate the parameter space by conducting dense grid searches for the lensing parameters. We then check the severity of the degeneracy among the identified solutions. We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s,q)in∌(1.297,1.10×10−3)(s, q)_{\rm in}\sim (1.297, 1.10\times 10^{-3}) for the inner solution and (s,q)out∌(1.242,1.15×10−3)(s, q)_{\rm out}\sim (1.242, 1.15\times 10^{-3}) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a mass Mp=0.88−0.36+0.38 MJM_{\rm p}=0.88^{+0.38}_{-0.36}~M_{\rm J} and its host with a mass Mh=0.73−0.30+0.32 M⊙M_{\rm h}=0.73^{+0.32}_{-0.30}~M_\odot lying toward the Galactic center at a distance DL=3.8−1.2+1.3D_{\rm L} =3.8^{+1.3}_{-1.2}~kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, it is found that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated.Comment: 9 pages, 8 figure

    Mass Production of 2021 KMTNet Microlensing Planets III: Analysis of Three Giant Planets

    Full text link
    We present the analysis of three more planets from the KMTNet 2021 microlensing season. KMT-2021-BLG-0119Lb is a ∌6 MJup\sim 6\, M_{\rm Jup} planet orbiting an early M-dwarf or a K-dwarf, KMT-2021-BLG-0192Lb is a ∌2 MNep\sim 2\, M_{\rm Nep} planet orbiting an M-dwarf, and KMT-2021-BLG-0192Lb is a ∌1.25 MNep\sim 1.25\, M_{\rm Nep} planet orbiting a very--low-mass M dwarf or a brown dwarf. These by-eye planet detections provide an important comparison sample to the sample selected with the AnomalyFinder algorithm, and in particular, KMT-2021-BLG-2294, is a case of a planet detected by-eye but not by-algorithm. KMT-2021-BLG-2294Lb is part of a population of microlensing planets around very-low-mass host stars that spans the full range of planet masses, in contrast to the planet population at â‰Č0.1 \lesssim 0.1\, au, which shows a strong preference for small planets.Comment: 17 pages, 12 figures, 7 tables. Accept for publication in The Astronomical Journa
    corecore