552 research outputs found

    Contemporary integrative taxonomy for sexually deprived protists: A case study of Trachelomonas (Euglenaceae) from western Ukraine

    Get PDF
    As many other protist groups, euglenophytes are prone to false identification based solely on morphology because of a limited amount of morphological features and cryptic speciation. One of the supposedly completely asexual groups within the freshwater phototrophic representatives of euglenophytes is Trachelomonas , capable of forming an inorganic shell around its cell (i.e., the lorica). The International Code of Nomenclature for algae, fungi, and plants regulates the taxonomy not only of flowering plants, but explicitly also of phototrophic protists, and provides powerful tools to resolve various taxonomic challenges. To exemplify some of the problems and potential solutions, a number of Trachelomonas strains were collected from the muddy, lake‐rich region of Dobrostany and cultivated under stable laboratory conditions. Being a type locality of 58 unclarified Trachelomonas names, this region in western Ukraine is of great taxonomic importance. Based on light and electron microscopy, and on RAxML and MrBayes phylogenetics using multiple loci and a representative taxon sample, a detailed description of investigated strains and their systematic placement is provided. Morphologically, the strains differed slightly but consistently in minute characters such as size, lorica shape and ornamentation. The presently most comprehensive molecular tree of the Euglenaceae indicated to the existence of at least five different species present in the newly investigated samples, although they were collected from localities in very close vicinity to each other and at the same date. Based on morphological comparisons with type illustrations of species validly described 100 or more years ago, biological material was used to epitypify three names of Trachelomonas , eternally linking morphology with reliable genetic information. This taxonomic application is one of the powerful methods to clarify ambiguous scientific names, which has particular importance in character‐poor protists such as the euglenophytes

    Material Circulation through Time: Chemical Differentiation Within the Mantle and Secular Variation of Temperature and Composition of the Mantle

    No full text

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies
    corecore