31 research outputs found

    Effect of Feedback on Performance in the Lane-Change Test

    Get PDF
    The Lane-Change Test (LCT) is an easy-to-use methodological tool that has proven useful for researching dual-task driving situations. This paper examines the effect of feedback on LCT performance. Feedback is important for maintaining the focus of attention on the primary (driving) task and providing motivation for learning. An experiment was conducted in which two driver groups performed the LCT with or without end-of-block summary feedback. Results showed that the presence of feedback significantly improved performance, as revealed by lower overall means and lower standard deviations (with practice) of lateral deviation values. We conclude that feedback can have a positive effect on performance in the LCT and, therefore, it may be critical to include such feedback when using this, as well as similar tasks, to investigate dual-task driving situations

    Review of three-dimensional human-computer interaction with focus on the leap motion controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    Visual search in virtual 3D space: the relation of multiple targets and distractors

    No full text
    Visual search and attentional alignment in 3D space are potentially modulated by information in unattended depth planes. The number of relevant and irrelevant items as well as their spatial relations may be regarded as factors which contribute to such effects. On a behavioral level, it might be different whether multiple distractors are presented in front of or behind target items. However, several studies revealed that attention cannot be restricted to a single depth plane. To further investigate this issue, two experiments were conducted. In the first experiment, participants searched for (multiple) targets in one depth plane, while non-target items (distractors) were simultaneously presented in this or another depth plane. In the second experiment, an additional spatial cue was presented with different validities to highlight the target position. Search durations were generally shorter when the search array contained two additional targets and were markedly longer when three distractors were displayed. The latter effect was most pronounced when a single target and three distractors coincided in the same depth plane and this effect persisted even when the target position was validly cued. The study reveals that the depth relation of target and distractor stimuli was more important than the absolute distance between these objects. Furthermore, the present findings suggest that within an attended depth plane, irrelevant information elicits strong interference. In sum, this study provides further evidence that allocation of attention is a flexible process which may be modulated by a variety of perceptual and cognitive factors

    Individual-Level Interventions for Decreasing Job-Related Stress and Enhancing Coping Strategies Among Nurses: A Systematic Review

    Get PDF
    BACKGROUND: Nurses are facing unprecedented amounts of pressure because of the ongoing global health challenges. Improving nurses' resilience to job-related stress and enhancing their strategies to cope effectively with stressors are key issues facing many health care institutions during the COVID-19 pandemic. This literature review aimed to: a) provide a thorough overview of individual-level interventions for stress management among nurses, b) identify measurement tools utilized to evaluate nurses' stress level, and c) provide the best evidence-based recommendations for future research and practice adapted to the current restrictions. DESIGN:Systematic review. DATA SOURCES: Studies published between January 2000 and October 2020 were retrieved from the following sources: EBSCOhost, Dortmund University Library, PubMed, Medline, Google Scholar, Applied Nursing Research, and reference lists from relevant articles. REVIEW METHODS: Individual-level interventions with a control group or a placebo intervention were included in the final sample. Primary outcome was defined as a change in individual stress level or stress symptoms which were measured by objective or subjective instruments with evidence of validity. Articles published in English or German were included in the present review. RESULTS: In total, 27 relevant studies were included into the current review. There are some indications that technology-delivered interventions with relaxation and stress management interventions comprising cognitive-behavioral components might be effective in decreasing stress among nurses and improving their well-being. Furthermore, although there were some attempts to collect objectively measured parameters for assessing the primary outcome of stress, the majority of the interventions utilized self-reported stress scales. CONCLUSION: A wide range of interventions are available for nurses. However, it is of utmost importance to develop and implement stress management programs that are conveniently accessible in the workplace and above all, meet the current restrictions for minimizing human contacts. To this end, innovative interventions delivered through digital technology, such as virtual reality, seem to be a promising solution for combating the detrimental impact of stress on nurses. Special attention should be also paid to applying standardized objective measurement tools to allow the assessment of sensitive physiological indices and the generalizability of scientific knowledge

    Fast and forceful: Modulation of response activation induced by shifts of perceived depth in virtual 3D space

    Get PDF
    Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e. retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing

    Does Acoustic Feedback Increase the Accuracy of Weight and Force Perception during Fine Motor Activities?

    No full text
    It is known from basic research that fine motor activities linked to object handling such as grasping and lifting are almost automatised and highly adapted to the properties of manipulated objects. Object surface properties influence the grip-lift force coupling at object-digit-surface and the object weight perception. Such force-coupling relies on visual and somatosensory processes along with the internal models. Limited or affected somatosensory mechanism could lead to disturbed force efforts and deterioration in object weight perception. Present study was aimed to evaluate the strategy to strengthen the somatosensory mechanism by implementing additional sensory channel (grip force related online acoustic feedback) during a standard weight discrimination task. Participants from both young and old age judged the heaviness of objects with different shapes, compared to a reference object using the precision grip. Results showed that object shape manipulation influenced grip force and weight perception. Integration of additional sense supported the forward model by reducing sensorimotor processing time in both age groups. This indicates the facilitatory impact of multisensory integration on motor control. Moreover, it lowered the discrimination threshold of weight perception and improved the accuracy level. Contrarily, the effect of assistive acoustic feedback on grip force application and weight perception was not significant. We clearly observed the overall aging effects for weight perception and grip force application

    Review of Three-Dimensional Human-Computer Interaction with Focus on the Leap Motion Controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    Where do the eyes really go in the hollow-face illusion?

    Get PDF
    The hollow-face illusion refers to the finding that people typically perceive a concave (hollow) mask as being convex, despite the presence of binocular disparity cues that indicate the contrary. Unlike other illusions of depth, recent research has suggested that the eyes tend to converge at perceived, rather than actual, depths. However, technical and methodological limitations prevented one from knowing whether disparity cues may still have influenced vergence. In the current study, we presented participants with virtual normal or hollow masks and asked them to fixate the tip of the face's nose until they had indicated whether they perceived it as pointing towards or away from them. The results showed that the direction of vergence was indeed determined by perceived depth, although vergence responses were both somewhat delayed and of smaller amplitude (by a factor of about 0.5) for concave than convex masks. These findings demonstrate how perceived depth can override disparity cues when it comes to vergence, albeit not entirely
    corecore