6 research outputs found

    Utilization of Lapsi seed stone (choerospondias axillaris) as source of activated charcoal for removal of arsenic

    Get PDF
    People inhabited in Terai region of Nepal use ground water as the main source of drinking water that are contaminated with arsenic at concentration level higher than guide line value set by WHO. The arsenic in the ground water is originated from the dissolution of naturally occurring arsenic containing minerals. Nepal, being a poor country, cannot afford to adopt costly and sophisticated technology to remove arsenic. Adsorptive removal of arsenic utilizing the activated charcoal prepared from the locally available Lapsi (chorespondias axillaris, Roxb) seed stone is presented. Tons of Lapsi seed stones are generated as waste which can be carbonized to activated charcoal. The adsorption capacity for arsenic is quite low for raw charcoal but activation followed by iron impregnation greatly enhances it. The low cost activated charcoal prepared from locally available Lapsi seed stones can be used in community level at point- of- use treatment for arsenic contaminated ground water of Terai region of Nepal

    Porous activated carbon materials from Triphala seed stones for high-performance supercapacitor applications

    Get PDF
    Porous activated carbon materials derived from biomass could be the suitable materials for high-rate performance electrochemical supercapacitors as it exhibits high surface area due to well-defined pore structure. Here, we report the novel porous activated carbon from Triphala seed stones by chemical activation with zinc chloride at different carbonization temperature (400-700 °C) under the nitrogen gas atmosphere. The activated carbon was characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering and scanning electron microscopy (SEM). Nitrogen adsorption-desorption measurements was used to study the surface properties (effective surface areas, pore volumes and pore size distributions). The electrochemical measurements were performed in an aqueous 1 M sulphuric acid (H2SO4) solution in a three-electrode cell set up. Triphala seed stones-derived porous carbon materials with well-defined micro- and mesopores exhibit high specific surface area ranges from 878.7 to 1233.3 m2 g-1 and total pore volume ranges from 0.439 to 0.626 cm3 g-1. The specific capacitance obtained by electrochemical measurement experiment was 208.7 F g-1 at 1 A g-1. These results indicate that the prepared nanoporous activated carbon material from Triphala seed stones would have significant possibility as supercapacitor electrode material for high-energy-storage supercapacitor applications

    Porous activated carbon materials from Triphala seed stones for high-performance supercapacitor applications

    Get PDF
    Porous activated carbon materials derived from biomass could be the suitable materials for high-rate performance electrochemical supercapacitors as it exhibits high surface area due to well-defined pore structure. Here, we report the novel porous activated carbon from Triphala seed stones by chemical activation with zinc chloride at different carbonization temperature (400-700 °C) under the nitrogen gas atmosphere. The activated carbon was characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering and scanning electron microscopy (SEM). Nitrogen adsorption-desorption measurements was used to study the surface properties (effective surface areas, pore volumes and pore size distributions). The electrochemical measurements were performed in an aqueous 1 M sulphuric acid (H2SO4) solution in a three-electrode cell set up. Triphala seed stones-derived porous carbon materials with well-defined micro- and mesopores exhibit high specific surface area ranges from 878.7 to 1233.3 m2 g-1 and total pore volume ranges from 0.439 to 0.626 cm3 g-1. The specific capacitance obtained by electrochemical measurement experiment was 208.7 F g-1 at 1 A g-1. These results indicate that the prepared nanoporous activated carbon material from Triphala seed stones would have significant possibility as supercapacitor electrode material for high-energy-storage supercapacitor applications

    Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product

    No full text
    In this paper, wool carpet dye adsorption properties of nanoporous activated carbon materials (NCMs) prepared from bamboo agro-product is reported. Bamboo cane powder was chemically activated with phosphoric acid at different temperatures (400, 500, and 600 °C) at an impregnation ratio of 1:1. We found that the specific surface area and the total pore volume of NCM increases with temperature giving the highest surface area and pore volume ca. 2130 m2·g−1 and 2.69 cc·g−1 at 600 °C. Owing to superior surface textural properties, bamboo-derived NCM showed excellent adsorption capacity for wool carpet dyes Lanasyn orange (LO) and Lanasyn gray (LG). The adsorption phenomena could be described by Langmuir/Freundlich adsorption isotherm models. The maximum adsorption capacity was ca. 2.60 × 103 and 3.04 × 103 mg·g−1 for LO and LG, respectively. The adsorption followed pseudo second order kinetics with the second order rate constant of 1.24 × 10−3 g·mg−1·min−1 (LO) and 7.69 × 10−4 g·mg−1·min−1 (LG), respectively. This study demonstrated that the high surface area NCMs prepared from agro-product can be used as efficient and cost-effective adsorbent materials for the removal of dyes from industrial effluent

    <i>Phyllanthus emblica</i> Seed-Derived Hierarchically Porous Carbon Materials for High-Performance Supercapacitor Applications

    No full text
    The electrical double-layer supercapacitance performance of the nanoporous carbons prepared from the Phyllanthus emblica (Amala) seed by chemical activation using the potassium hydroxide (KOH) activator is reported. KOH activation was carried out at different temperatures (700–1000 °C) under nitrogen gas atmosphere, and in a three-electrode cell set-up the electrochemical measurements were performed in an aqueous 1 M sulfuric acid (H2SO4) solution. Because of the hierarchical pore structures with well-defined micro- and mesopores, Phyllanthus emblica seed-derived carbon materials exhibit high specific surface areas in the range of 1360 to 1946 m2 g−1, and the total pore volumes range from 0.664 to 1.328 cm3 g−1. The sample with the best surface area performed admirably as the supercapacitor electrode-material, achieving a high specific capacitance of 272 F g−1 at 1 A g−1. Furthermore, it sustained 60% capacitance at a high current density of 50 A g−1, followed by a remarkably long cycle-life of 98% after 10,000 subsequent charging/discharging cycles, demonstrating the electrode’s excellent rate-capability. These results show that the Phyllanthus emblica seed would have significant possibilities as a sustainable carbon-source for the preparing high-surface-area activated-carbons desired in high-energy-storage supercapacitors
    corecore