54 research outputs found
Results from the Solar Hidden Photon Search (SHIPS)
We present the results of a search for transversely polarised hidden photons
(HPs) with eV energies emitted from the Sun. These hypothetical
particles, known also as paraphotons or dark sector photons, are theoretically
well motivated for example by string theory inspired extensions of the Standard
Model. Solar HPs of sub-eV mass can convert into photons of the same energy
(photonHP oscillations are similar to neutrino flavour
oscillations). At SHIPS this would take place inside a long light-tight
high-vacuum tube, which tracks the Sun. The generated photons would then be
focused into a low-noise photomultiplier at the far end of the tube. Our
analysis of 330 h of data (and {330 h} of background characterisation) reveals
no signal of photons from solar hidden photon conversion. We estimate the rate
of newly generated photons due to this conversion to be smaller than 25
mHz/m at the 95 C.L. Using this and a recent model of solar HP emission,
we set stringent constraints on , the coupling constant between HPs and
photons, as a function of the HP mass
Laplace-Beltrami Refined Shape Regression Applied to Neck Reconstruction for Craniosynostosis Patients Combining posterior shape models with a Laplace-Beltrami based approach for shape reconstruction
This contribution is part of a project concerning the creation of an artificial dataset comprising 3D head scans of craniosynostosis patients for a deep-learning-basedclassification. To conform to real data, both head and neck are required in the 3D scans. However, during patient recording, the neck is often covered by medical staff. Simply pasting an arbitrary neck leaves large gaps in the 3D mesh. We therefore use a publicly available statistical shape model (SSM) for neck reconstruction. However, mostSSMs of the head are constructed using healthy subjects, so the full head reconstruction loses the craniosynostosis-specific head shape. We propose a method to recover the neck while keeping the pathological head shape intact. We propose a Laplace-Beltrami-based refinement step to deform the posterior mean shape of the full head model towards the pathological head. The artificial neck is created using the publicly available Liverpool-York-Model. We apply our method to construct artificial necks for head scans of 50 scaphocephaly patients. Our method reduces mean vertex correspondence error by approximately 1.3 mm compared to the ordinary posterior mean shape, preserves the pathological head shape, and creates a continuous transition between neck and head. The presented method showed good results for reconstructing a plausible neck to craniosynostosis patients. Easily generalized it might also be applicable to other pathological shapes
The Use of Artificial Intelligence for the Classification of Craniofacial Deformities
Positional cranial deformities are a common finding in toddlers, yet differentiation from craniosynostosis can be challenging. The aim of this study was to train convolutional neural networks (CNNs) to classify craniofacial deformities based on 2D images generated using photogrammetry as a radiation-free imaging technique. A total of 487 patients with photogrammetry scans were included in this retrospective cohort study: children with craniosynostosis (n = 227), positional deformities (n = 206), and healthy children (n = 54). Three two-dimensional images were extracted from each photogrammetry scan. The datasets were divided into training, validation, and test sets. During the training, fine-tuned ResNet-152s were utilized. The performance was quantified using tenfold cross-validation. For the detection of craniosynostosis, sensitivity was at 0.94 with a specificity of 0.85. Regarding the differentiation of the five existing classes (trigonocephaly, scaphocephaly, positional plagiocephaly left, positional plagiocephaly right, and healthy), sensitivity ranged from 0.45 (positional plagiocephaly left) to 0.95 (scaphocephaly) and specificity ranged from 0.87 (positional plagiocephaly right) to 0.97 (scaphocephaly). We present a CNN-based approach to classify craniofacial deformities on two-dimensional images with promising results. A larger dataset would be required to identify rarer forms of craniosynostosis as well. The chosen 2D approach enables future applications for digital cameras or smartphones
A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling
Background: Craniosynostosis is a condition caused by the premature fusion of skull sutures, leading to irregular growth patterns of the head. Three-dimensional photogrammetry is a radiation-free alternative to the diagnosis using computed tomography. While statistical shape models have been proposed to quantify head shape, no shape-model-based classification approach has been presented yet. Methods: We present a classification pipeline that enables an automated diagnosis of three types of craniosynostosis. The pipeline is based on a statistical shape model built from photogrammetric surface scans. We made the model and pathology-specific submodels publicly available, making it the first publicly available craniosynostosis-related head model, as well as the first focusing on infants younger than 1.5 years. To the best of our knowledge, we performed the largest classification study for craniosynostosis to date. Results: Our classification approach yields an accuracy of 97.8 %, comparable to other state-of-the-art methods using both computed tomography scans and stereophotogrammetry. Regarding the statistical shape model, we demonstrate that our model performs similar to other statistical shape models of the human head. Conclusion: We present a state-of-the-art shape-model-based classification approach for a radiation-free diagnosis of craniosynostosis. Our publicly available shape model enables the assessment of craniosynostosis on realistic and synthetic data
Generative-Adversarial-Network-Based Data Augmentation for the Classification of Craniosynostosis
Craniosynostosis is a congenital disease characterized by the premature closure of one or multiple sutures of the infant’s skull. For diagnosis, 3D photogrammetric scans are a radiation-free alternative to computed tomography. However, data is only sparsely available and the role of data augmentation for the classification of craniosynostosis has not yet been analyzed. In this work, we use a 2D distance map representation of the infants’ heads with a convolutional-neural-network-based classifier and employ a generative adversarial network (GAN) for data augmentation. We simulate two data scarcity scenarios with 15% and 10% training data and test the influence of different degrees of added synthetic data and balancing underrepresented classes. We used total accuracy and F1-score as a metric to evaluate the final classifiers. For 15% training data, the GAN-augmented dataset showed an increased F1-score up to 0.1 and classification accuracy up to 3 %. For 10% training data, both metrics decreased. We present a deep convolutional GAN capable of creating synthetic data for the classification of craniosynostosis. Using a moderate amount of synthetic data using a GAN showed slightly better performance, but had little effect overall. The simulated scarcity scenario of 10% training data may have limited the model’s ability to learn the underlying data distribution
Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
- …