8 research outputs found
Deficiency of SARS-CoV-2 T-cell responses after vaccination in long-term allo-HSCT survivors translates into abated humoral immunity
Recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematological diseases are at risk of severe disease and death from COVID-19. To determine the safety and immunogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines, samples from 50 infection-naive allo-HSCT recipients (median, 92 months from transplantation, range, 7-340 months) and 39 healthy controls were analyzed for serum immunoglobulin G (IgG) against the receptor binding domain (RBD) within spike 1 (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; antiâRBD-S1 IgG) and for SARS-CoV-2âspecific T-cell immunity, reflected by induction of T-cellâderived interferon-g in whole blood stimulated ex vivo with 15-mer SI-spanning peptides with 11 amino acid overlap S1-spanning peptides. The rate of seroconversion was not significantly lower in allo-transplanted patients than in controls with 24% (12/50) and 6% (3/50) of patients remaining seronegative after the first and second vaccination, respectively. However, 58% of transplanted patients lacked T-cell responses against S1 peptides after 1 vaccination compared with 19% of controls (odds ratio [OR] 0.17; P 5 .009, Fisherâs exact test) with a similar trend after the second vaccination where 28% of patients were devoid of detectable specific T-cell immunity, compared with 6% of controls (OR 0.18; P 5 .02, Fisherâs exact test). Importantly, lack of T-cell reactivity to S1 peptides after vaccination heralded substandard levels (,100 BAU/mL) of antiâRBD-S1 IgG 5 to 6 months after the second vaccine dose (OR 8.2; P 5 .007, Fisherâs exact test). We conclude that although allo-HSCT recipients achieve serum antiâRBD-S1 IgG against SARS-CoV-2 after 2 vaccinations, a deficiency of SARS-CoV-2âspecific T-cell immunity may subsequently translate into insufficient humoral responses
Global loss of cellular m 6 A RNA methylation following infection with different SARS-CoV-2 variants
International audienceInsights into hostâvirus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N 6 -Methyladenosine modification (m 6 A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m 6 A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m 6 A in cellular RNAs, whereas m 6 A is detected abundantly in viral RNA. METTL3, the m 6 A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m 6 A than did the B.1 and B.1.1.7 variants. We also observed a loss of m 6 A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m 6 A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m 6 A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m 6 A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m 6 A-dependent manner