37 research outputs found

    Inverse optimal control for averaged cost per stage linear quadratic regulators

    Full text link
    Inverse Optimal Control (IOC) is a powerful framework for learning a behaviour from observations of experts. The framework aims to identify the underlying cost function that the observed optimal trajectories (the experts' behaviour) are optimal with respect to. In this work, we considered the case of identifying the cost and the feedback law from observed trajectories generated by an ``average cost per stage" linear quadratic regulator. We show that identifying the cost is in general an ill-posed problem, and give necessary and sufficient conditions for non-identifiability. Moreover, despite the fact that the problem is in general ill-posed, we construct an estimator for the cost function and show that the control gain corresponding to this estimator is a statistically consistent estimator for the true underlying control gain. In fact, the constructed estimator is based on convex optimization, and hence the proved statistical consistency is also observed in practice. We illustrate the latter by applying the method on a simulation example from rehabilitation robotics.Comment: 10 pages, 2 figure

    Estimating ensemble flows on a hidden Markov chain

    Full text link
    We propose a new framework to estimate the evolution of an ensemble of indistinguishable agents on a hidden Markov chain using only aggregate output data. This work can be viewed as an extension of the recent developments in optimal mass transport and Schr\"odinger bridges to the finite state space hidden Markov chain setting. The flow of the ensemble is estimated by solving a maximum likelihood problem, which has a convex formulation at the infinite-particle limit, and we develop a fast numerical algorithm for it. We illustrate in two numerical examples how this framework can be used to track the flow of identical and indistinguishable dynamical systems.Comment: 8 pages, 4 figure

    Inverse linear-quadratic discrete-time finite-horizon optimal control for indistinguishable homogeneous agents: A convex optimization approach

    Get PDF
    The inverse linear-quadratic optimal control problem is a system identification problem whose aim is to recover the quadratic cost function and hence the closed-loop system matrices based on observations of optimal trajectories. In this paper, the discrete-time, finite-horizon case is considered, where the agents are also assumed to be homogeneous and indistinguishable. The latter means that the agents all have the same dynamics and objective functions and the observations are in terms of “snap shots” of all agents at different time instants, but what is not known is “which agent moved where” for consecutive observations. This absence of linked optimal trajectories makes the problem challenging. We first show that this problem is globally identifiable. Then, for the case of noiseless observations, we show that the true cost matrix, and hence the closed-loop system matrices, can be recovered as the unique global optimal solution to a convex optimization problem. Next, for the case of noisy observations, we formulate an estimator as the unique global optimal solution to a modified convex optimization problem. Moreover, the statistical consistency of this estimator is shown. Finally, the performance of the proposed method is demonstrated by a number of numerical examples
    corecore