23 research outputs found
Determination of Edema in Porcine Coronary Arteries by T2 Weighted Cardiovascular Magnetic Resonance
CMR Assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset
<p>Abstract</p> <p>Background</p> <p>Endothelial damage and angiogenesis are essential for atherosclerotic plaque development and destabilization. We sought to examine whether contrast enhanced cardiovascular magnetic resonance (CMR) using gadofosveset could show endothelial damage and neovessel formation in balloon injured porcine coronary arteries.</p> <p>Methods and Results</p> <p>Data were obtained from seven pigs that all underwent balloon injury of the left anterior descending coronary artery (LAD) to induce endothelial damage and angiogenesis. Between one - 12 days (average four) after balloon injury, in vivo and ex vivo T1-weighted coronary CMR was performed after intravenous injection of gadofosveset. Post contrast, CMR showed contrast enhancement of the coronary arteries with a selective and time-dependent average expansion of the injured LAD segment area of 45% (p = 0.04; CI<sub>95 </sub>= [15%-75%]), indicating local extravasation of gadofosveset. Vascular and perivascular extravasation of albumin (marker of endothelial leakiness) and gadofosveset was demonstrated with agreement between Evans blue staining and ex vivo CMR contrast enhancement (p = 0.026). Coronary MRI contrast enhancement and local microvessel density determined by microscopic examination correlated (ρ = 0.82, p < 0.001).</p> <p>Conclusion</p> <p>Contrast enhanced coronary CMR with gadofosveset can detect experimentally induced endothelial damage and angiogenesis in the porcine coronary artery wall.</p
Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvesting
International audienceAbstract Piezoelectrics are key materials for energy conversion, for example in ultrasound transducers and energy harvesters. This work presents the synthesis and characterization of the lead-free piezoelectric composition (Li 0.06 (K 0.52 Na 0.48 ) 0.94 )(Nb 0.71 Ta 0.29 )O 3 doped with 0.25 mol% Mn (KNNLTM) as textured ceramics. Templated grain growth from NaNbO 3 platelet templates aligned by tape casting was used to introduce texture, and after sintering for 14 h at 1100 °C this produced up to 84% (100) pc grain orientation. After high temperature poling, the textured samples exhibit reasonable piezoelectric response with d 33 values up to 171 pC N −1 , and k t values of 0.35, which is 71% of the response obtained in a single crystal of the same composition. The low relative dielectric permittivity of the textured and high temperature-poled KNNLTM ( ϵ 33 T / ϵ 0 down to 182) resulted in record-high piezoelectric voltage constants ( g 33 up to 101 mV m N −1 ), higher than previously reported for lead-free piezoelectric ceramics, as well as very high figure of merit ( d 33 g 33 up to 16 × 10 −12 m 3 J −1 ) for non-resonant energy harvesting in compression. These numbers make the textured KNNLTM materials of this work highly promising for use in thickness mode, non-resonant piezoelectric energy harvesters
Textured multilayered piezoelectric structures for energy conversion
International audienc
Development of Porous Piezoceramics for Medical and Sensor Applications
The use of porosity to modify the functional properties of piezoelectric ceramics is well known in the scientific literature as well as by the industry, and porous ceramic can be seen as a 2-phase composite. In the present work, examples are given of applications where controlled porosity is exploited in order to optimise the dielectric, piezoelectric and acoustic properties of the piezoceramics. For the optimisation efforts it is important to note that the thickness coupling coefficient kt will be maximised for some non-zero value of the porosity that could be above 20%. On the other hand, with a good approximation, the acoustic velocity decreases linearly with increasing porosity, which is obviously also the case for the density. Consequently, the acoustic impedance shows a rather strong decrease with porosity, and in practice a reduction of more than 50% may be obtained for an engineered porous ceramic. The significance of the acoustic impedance is associated with the transmission of acoustic signals through the interface between the piezoceramic and some medium of propagation, but when the porous ceramic is used as a substrate for a piezoceramic thick film, the attenuation may be equally important. In the case of open porosity it is possible to introduce a liquid into the pores, and examples of modifying the properties in this way are given