46 research outputs found
Breaking the icosahedra in boron carbide
Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials
Delayed presentation of acute ischemic strokes during the COVID-19 crisis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background: The COVID-19 pandemic has disrupted established care paths worldwide. Patient awareness of the pandemic and executive limitations imposed on public life have changed the perception of when to seek care for acute conditions in some cases. We sought to study whether there is a delay in presentation for acute ischemic stroke patients in the first month of the pandemic in the US.
Methods: The interval between last-known-well (LKW) time and presentation of 710 consecutive patients presenting with acute ischemic strokes to 12 stroke centers across the US were extracted from a prospectively maintained quality database. We analyzed the timing and severity of the presentation in the baseline period from February to March 2019 and compared results with the timeframe of February and March 2020.
Results: There were 320 patients in the 2-month baseline period in 2019, there was a marked decrease in patients from February to March of 2020 (227 patients in February, and 163 patients in March). There was no difference in the severity of the presentation between groups and no difference in age between the baseline and the COVID period. The mean interval from LKW to the presentation was significantly longer in the COVID period (603±1035 min) compared with the baseline period (442±435 min, P<0.02).
Conclusion: We present data supporting an association between public awareness and limitations imposed on public life during the COVID-19 pandemic in the US and a delay in presentation for acute ischemic stroke patients to a stroke center
Do mammals make all their own inositol hexakisphosphate?
A highly specific and sensitive mass assay for inositol hexakisphosphate (InsP6) was characterized. This centres around phosphorylating InsP6 with [32P]ATP using a recombinant InsP6 kinase from Giardia lambia, followed by HPLC of the 32P-labelled products with an internal [3H]InsP7 standard. This assay was used to quantify InsP6 levels in a variety of biological samples. Concentrations of InsP6 in rat tissues varied from 10–20 μM (assuming 64% of wet weight of tissue is cytosol water), whereas using the same assumption axenic Dictyostelium discoideum cells contained 352±11 μM InsP6. HeLa cells were seeded at low density and grown to confluence, at which point they contained InsP6 levels per mg of protein similar to rat tissues. This amounted to 1.952±0.117 nmol InsP6 per culture dish, despite the cells being grown in serum shown to contain no detectable (less than 20 pmol per dish) InsP6. These results demonstrate that mammalian cells synthesize all their own InsP6. Human blood was analysed, and although the white cell fraction contained InsP6 at a concentration comparable with other tissues, in serum and platelet-free plasma no InsP6 was detected (<1 nM InsP6). Human urine was also examined, and also contained no detectable (<5 nM) InsP6. These results suggest that dietary studies purporting to measure InsP6 at micromolar concentrations in human plasma or urine may not have been quantifying this inositol phosphate. Therefore claims that administrating InsP6 in the diet or applying it topically can produce health benefits by increasing extracellular InsP6 levels may require reassessment
Is infrared-collinear safe information all you need for jet classification?
Abstract Machine learning-based jet classifiers are able to achieve impressive tagging performance in a variety of applications in high-energy and nuclear physics. However, it remains unclear in many cases which aspects of jets give rise to this discriminating power, and whether jet observables that are tractable in perturbative QCD such as those obeying infrared-collinear (IRC) safety serve as sufficient inputs. In this article, we introduce a new classifier, Jet Flow Networks (JFNs), in an effort to address the question of whether IRC unsafe information provides additional discriminating power in jet classification. JFNs are permutation-invariant neural networks (deep sets) that take as input the kinematic information of reconstructed subjets. The subjet radius and a cut on the subjet’s transverse momenta serve as tunable hyperparameters enabling a controllable sensitivity to soft emissions and nonperturbative effects. We demonstrate the performance of JFNs for quark vs. gluon and Z vs. QCD jet tagging. For small subjet radii and transverse momentum cuts, the performance of JFNs is equivalent to the IRC-unsafe Particle Flow Networks (PFNs), demonstrating that infrared-collinear unsafe information is not necessary to achieve strong discrimination for both cases. As the subjet radius is increased, the performance of the JFNs remains essentially unchanged until physical thresholds that we identify are crossed. For relatively large subjet radii, we show that the JFNs may offer an increased model independence with a modest tradeoff in performance compared to classifiers that use the full particle information of the jet. These results shed new light on how machines learn patterns in high-energy physics data
Delayed presentation of acute ischemic strokes during the COVID-19 crisis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background: The COVID-19 pandemic has disrupted established care paths worldwide. Patient awareness of the pandemic and executive limitations imposed on public life have changed the perception of when to seek care for acute conditions in some cases. We sought to study whether there is a delay in presentation for acute ischemic stroke patients in the first month of the pandemic in the US.
Methods: The interval between last-known-well (LKW) time and presentation of 710 consecutive patients presenting with acute ischemic strokes to 12 stroke centers across the US were extracted from a prospectively maintained quality database. We analyzed the timing and severity of the presentation in the baseline period from February to March 2019 and compared results with the timeframe of February and March 2020.
Results: There were 320 patients in the 2-month baseline period in 2019, there was a marked decrease in patients from February to March of 2020 (227 patients in February, and 163 patients in March). There was no difference in the severity of the presentation between groups and no difference in age between the baseline and the COVID period. The mean interval from LKW to the presentation was significantly longer in the COVID period (603±1035 min) compared with the baseline period (442±435 min, P<0.02).
Conclusion: We present data supporting an association between public awareness and limitations imposed on public life during the COVID-19 pandemic in the US and a delay in presentation for acute ischemic stroke patients to a stroke center