52 research outputs found
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
This work focuses on the in-depth reconstruction of the full set of
parameters of interest in single-block rockfall trajectories. A comprehensive
understanding of rockfall trajectories holds the promise to enhance the
application of numerical models for engineering hazard analysis. Such
knowledge is equally important to investigate wider cascade problems in steep
terrain. Here, we present a full four-dimensional trajectory reconstruction
of the “Chant Sura” rockfall experiment performed with EOTA221 norm rocks. The data
analysis allows a complete kinematic description of a rock's trajectory in
real terrain and underscores the physical complexity of rock–ground
interactions. In situ accelerometer and gyroscope data are combined with
videogrammetric and unmanned aerial-systems mapping techniques to understand
the role of rock rotations, ground penetration and translational scarring in
rockfall motion. The exhaustive trajectory reconstruction provides
information over the complete flight path such as translational velocity
vectors, angular velocities, impact duration and forces, ballistic jump
heights, and lengths. The experimental data provide insight into the basic
physical processes detailing how rotating rocks of general shape penetrate,
rebound and scar ground terrain. In future, the data will serve as a calibration
basis to enhance numerical rockfall modelling.</p
Polyelectrolyte Complexation At Oxide-Water Interfaces : Influence on Colloidal Stability Complexation de polyelectrolytes aux interfaces oxydes-eau : influence sur la stabilité colloidale
International audienceNo abstract availabl
Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and forward modeling
International audienc
Minibasins and salt canopy in foreland fold-and-thrust belts: The central Sivas Basin, Turkey
ACLInternational audienceThe Sivas Basin in the Central Anatolian Plateau (Turkey), which formed in the context of a foreland fold-and-thrust belt (FTB), exhibits a typical wall and basin (WAB) province characterized by symmetric minibasins separated by continuous steep-flanked walls and diapirs. Extensive fieldwork including regional and detailed local mapping of the contacts and margins of minibasins, and interpretation of a set of 2-D regional seismic lines, provide evidence for the development of a shallow evaporite level separating two generations of minibasins within the WAB province. Here beds of symmetric exposed minibasins along diapir flank are younger than minibasins observed over autochthonous evaporites. Laterally away from the WAB province, increase in wavelength of the tectonic structures suggests a deepening of the decollement level. We interpret that a shallower evaporite level developed in the form of an evaporite canopy, triggered by significant lateral shortening. The Upper Eocene-Lower Oligocene autochthonous Tuzhisar evaporite level was remobilized by the northward migrating sedimentary load and the tilting of the southern basin margin during propagation of the foreland fold-and-thrust belt. Asymmetric and symmetric primary minibasins were overrun by an allochthonous sheet forming a canopy. A second generation of salt withdrawal minibasins subsided into the allochthonous salt sheet. The polygonal pattern of the WAB province influences the growing fold-and-thrust belt system during the late stage of the secondary minibasins development. The Sivas FTB basin is the result of the interaction between fold-and-thrust belt propagation, evaporite remobilization, and interaction between evaporite flow and sedimentation in the minibasins. ©2016. American Geophysical Union. All Rights Reserved
Transition from marine deep slope deposits to evaporitic facies of an isolated shallow water hypersaline basin: case study of the Sivas foreland basin (Turkey)
AFFInternational audienc
Transition from marine deep slope deposits to evaporitic facies of an isolated shallow water hypersaline basin: case study of the Sivas foreland basin (Turkey)
AFFInternational audienc
Case study of a flysch-evaporite transition in a foreland basin: the Sivas basin (Turkey)
ACTInternational audienc
Facial acquisition by dynamic optical tracked laser imaging : a new approach
Three-dimensional capture of the surface of soft tissue is a desirable support for documentation and therapy planning in plastic and reconstructive surgery concerning the complex anatomy of the face, particularly cleft lip and palate (CLP). Different scanning systems are used for capturing facial surfaces. These systems are mostly based on a static linear measuring arrangement. Established systems work on the basis of coded white light or linear laser triangulation and digital stereophotogrammetric approaches. Shadowing effects occur with these devices. These effects may be avoided by a radical new approach first used in automotive industries that employs a mobile, flexible handheld laser scanner with simultaneous registration by optical tracking. The aim of this study was to assess the suitability of this scanner for surgical procedures on the human face in operating theatre. Five babies aged about 3 months with cleft deformities (one CLP, one bilateral CLP, three isolated cleft lips) were captured directly: twice preoperatively, twice postoperatively and twice after 7 days. An industrial standard specimen and two plaster cast masks of CLP babies were taken and subsequently measured to assess reliability and validity of the device. Masks were measured to reflect the complex surface of the cleft deformity. Data evaluation was done with respect to completeness of the data sets, as well as reliability and validity of the system. Missing data caused by shadowing could be avoided in all images. Even complex areas with undercuts could be reproduced completely and precisely with an accuracy in the sub-millimetre range
- …