12 research outputs found
Update on HER-2 as a target for cancer therapy: The ERBB2 promoter and its exploitation for cancer treatment
Overexpression of the ERBB2 proto-oncogene is associated with amplification of the gene in breast cancer but increased activity of the promoter also plays a significant role. Members of two transcription factor families (AP-2 and Ets) show increased binding to the promoter in over-expressing cells. Consequently, strategies have been devised to target promoter activity, either through the DNA binding sites for these factors, or through another promoter sequence, a polypurine-polypyrimidine repeat structure. The promoter has also been exploited for its tumour-specific activity to direct the accumulation of cytotoxic compounds selectively within cancer cells. Our current understanding of the ERBB2 promoter is reviewed and the status of these therapeutic avenues is discussed
Gene therapy for carcinoma of the breast: Genetic toxins
Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy
Recombinant respiratory syncytial virus lacking secreted glycoprotein G is attenuated, non-pathogenic but induces protective immunity
Respiratory syncytial virus (RSV) causes intense pulmonary inflammatory responses in some infected infants. The surface attachment protein 'G' of RSV has membrane-bound and secreted forms and shows homology to the CX3C chemokine fractalkine. Using recombinant techniques, we generated replication-competent recombinant clonal RSV expressing normal G proteins ('rRSV') or only the membrane-bound form of G ('Gmem rRSV'). Both recombinants grew well in HEp-2 cells, but after primary intranasal infection in mice, pulmonary Gmem rRSV replication was reduced tenfold compared to parental or rRSV; moreover, CCL2 and CCL5 production was greatly reduced and no apparent disease or pulmonary cellular infiltration was observed. However, Gmem rRSV-infected mice developed good antibody responses and were fully protected against subsequent intranasal challenge with parental virus. Even in mice sensitized to G by cutaneous infection with recombinant vaccinia expressing G, intranasal challenge with Gmem rRSV caused insignificant disease. We conclude that secreted G is a key viral product assisting virus replication in vivo, enhancing CCL2 and CCL5 production and promoting illness. Engineered RSV mutants lacking the ability to secrete G are thus promising vaccine candidates