121 research outputs found
A New Approach in Risk Stratification by Coronary CT Angiography.
For a decade, coronary computed tomographic angiography (CCTA) has been used as a promising noninvasive modality for the assessment of coronary artery disease (CAD) as well as cardiovascular risks. CCTA can provide more information incorporating the presence, extent, and severity of CAD; coronary plaque burden; and characteristics that highly correlate with those on invasive coronary angiography. Moreover, recent techniques of CCTA allow assessing hemodynamic significance of CAD. CCTA may be potentially used as a substitute for other invasive or noninvasive modalities. This review summarizes risk stratification by anatomical and hemodynamic information of CAD, coronary plaque characteristics, and burden observed on CCTA
A New Approach in Risk Stratification by Coronary CT Angiography
For a decade, coronary computed tomographic angiography (CCTA) has been used as a promising noninvasive modality for the assessment of coronary artery disease (CAD) as well as cardiovascular risks. CCTA can provide more information incorporating the presence, extent, and severity of CAD; coronary plaque burden; and characteristics that highly correlate with those on invasive coronary angiography. Moreover, recent techniques of CCTA allow assessing hemodynamic significance of CAD. CCTA may be potentially used as a substitute for other invasive or noninvasive modalities. This review summarizes risk stratification by anatomical and hemodynamic information of CAD, coronary plaque characteristics, and burden observed on CCTA
Recommended from our members
Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with diabetes: A randomized, double-blind, placebo-controlled study.
Several previous studies have demonstrated that aged garlic extract (AGE) inhibits the progression of coronary artery calcification and non-calcified plaque (NCP) in the general population. However, its effects on plaque progression in patients with diabetes have not yet been investigated, at least to the best of our knowledge. This study investigated whether AGE reduces the coronary plaque volume measured by cardiac computed tomography angiography (CCTA) in patients with diabetes mellitus (DM). A total of 80 participants with DM with a median age of 57 years were prospectively assigned to consume 2,400 mg AGE/day (after completion, 37 participants) or placebo (after completion, 29 participants) orally. Both groups underwent CCTA at baseline and follow-up 365 days apart. In total, 66 participants completed the study. Coronary plaque volume, including total plaque (TP), dense calcium (DC), fibrous, fibro-fatty and low-attenuation plaque (LAP) volumes were measured based upon pre-defined intensity cut-off values using semi-automated software (QAngio CT). Changes in various plaque types were normalized to the total coronary artery length. The non-parametric Wilcoxon rank-sum test was performed to examine the differences in plaque formation between the 2 groups. No significant differences were found in the baseline characteristics between the AGE and placebo groups. Compared with the placebo group, the AGE group exhibited a statistically significant regression in normalized LAP [median and standard deviation (SD) -0.2 (18.8) vs. 2.5 (69.3), P=0.0415]. No differences were observed in TP, fibrous, or fibrofatty plaque volumes between the AGE and placebo group. On the whole, this study indicated that the %LAP change in the AGE group was significantly greater than that in the placebo group in patients with diabetes. However, further studies are warranted to evaluate whether AGE has the ability to stabilize vulnerable plaque and decrease adverse cardiovascular events
Evaluating the American Heart Association/American College of Cardiology Guideline—Recommended and Contemporary Pretest Probability Models in a Mixed Asian Cohort: The Contribution of Coronary Artery Calcium
BACKGROUND: Most pretest probability (PTP) tools for obstructive coronary artery disease (CAD) were Western -developed. The most appropriate PTP models and the contribution of coronary artery calcium score (CACS) in Asian populations remain unknown. In a mixed Asian cohort, we compare 5 PTP models: local assessment of the heart (LAH), CAD Consortium (CAD2), risk factor-weighted clinical likelihood, the American Heart Association/American College of Cardiology and the European Society of Cardiology PTP and 3 extended versions of these models that incorporated CACS: LAH (CACS), CAD2 (CACS), and the CACS-clinical likelihood. METHODS AND RESULTS: The study cohort included 771 patients referred for stable chest pain. Obstructive CAD prevalence was 27.5%. Calibration, area under the receiver-operating characteristic curves (AUC) and net reclassification index were evaluated. LAH clinical had the best calibration (χ 2 5.8; P=0.12). For CACS models, LAH (CACS) showed least deviation between observed and expected cases (χ 2 37.5; P<0.001). There was no difference in AUCs between the LAH clinical (AUC, 0.73 [95% CI, 0.69-0.77]), CAD2 clinical (AUC, 0.72 [95% CI, 0.68-0.76]), risk factor-weighted clinical likelihood (AUC, 0.73 [95% CI: 0.69-0.76) and European Society of Cardiology PTP (AUC, 0.71 [95% CI, 0.67-0.75]). CACS improved discrimination and reclassification of the LAH (CACS) (AUC, 0.88; net reclassification index, 0.46), CAD2 (CACS) (AUC, 0.87; net reclassification index, 0.29) and CACS-CL (AUC, 0.87; net reclassification index, 0.25). CONCLUSIONS: In a mixed Asian cohort, Asian-derived LAH models had similar discriminatory performance but better calibration and risk categorization for clinically relevant PTP cutoffs. Incorporating CACS improved discrimination and reclassification. These results support the use of population-matched, CACS-inclusive PTP tools for the prediction of obstructive CAD.</p
Current but not past smoking increases the risk of cardiac events: insights from coronary computed tomographic angiography
Aims We evaluated coronary artery disease (CAD) extent, severity, and major adverse cardiac events (MACEs) in never, past, and current smokers undergoing coronary CT angiography (CCTA). Methods and results We evaluated 9456 patients (57.1 ± 12.3 years, 55.5% male) without known CAD (1588 current smokers; 2183 past smokers who quit ≥3 months before CCTA; and 5685 never smokers). By risk-adjusted Cox proportional-hazards models, we related smoking status to MACE (all-cause death or non-fatal myocardial infarction). We further performed 1:1:1 propensity matching for 1000 in each group evaluate event risk among individuals with similar age, gender, CAD risk factors, and symptom presentation. During a mean follow-up of 2.8 ± 1.9 years, 297 MACE occurred. Compared with never smokers, current and past smokers had greater atherosclerotic burden including extent of plaque defined as segments with any plaque (2.1 ± 2.8 vs. 2.6 ± 3.2 vs. 3.1 ± 3.3, P < 0.0001) and prevalence of obstructive CAD [1-vessel disease (VD): 10.6% vs. 14.9% vs. 15.2%, P < 0.001; 2-VD: 4.4% vs. 6.1% vs. 6.2%, P = 0.001; 3-VD: 3.1% vs. 5.2% vs. 4.3%, P < 0.001]. Compared with never smokers, current smokers experienced higher MACE risk [hazard ratio (HR) 1.9, 95% confidence interval (CI) 1.4-2.6, P < 0.001], while past smokers did not (HR 1.2, 95% CI 0.8-1.6, P = 0.35). Among matched individuals, current smokers had higher MACE risk (HR 2.6, 95% CI 1.6-4.2, P < 0.001), while past smokers did not (HR 1.3, 95% CI 0.7-2.4, P = 0.39). Similar findings were observed for risk of all-cause death. Conclusion Among patients without known CAD undergoing CCTA, current and past smokers had increased burden of atherosclerosis compared with never smokers; however, risk of MACE was heightened only in current smoker
Recommended from our members
Biomarkers and Noncalcified Coronary Artery Plaque Progression in Older Men Treated With Testosterone.
ObjectiveRecent results from the Cardiovascular Trial of the Testosterone Trials showed that testosterone treatment of older men with low testosterone was associated with greater progression of noncalcified plaque (NCP). We evaluated the effect of anthropometric measures and cardiovascular biomarkers on plaque progression in individuals in the Testosterone Trial.MethodsThe Cardiovascular part of the trial included 170 men aged 65 years or older with low testosterone. Participants received testosterone gel or placebo gel for 12 months. The primary outcome was change in NCP volume from baseline to 12 months, as determined by coronary computed tomography angiography (CCTA). We assayed several markers of cardiovascular risk and analyzed each marker individually in a model as predictive variables and change in NCP as the dependent variable.ResultsOf 170 enrollees, 138 (73 testosterone, 65 placebo) completed the study and were available for the primary analysis. Of 10 markers evaluated, none showed a significant association with the change in NCP volume, but a significant interaction between treatment assignment and waist-hip ratio (WHR) (P = 0.0014) indicated that this variable impacted the testosterone effect on NCP volume. The statistical model indicated that for every 0.1 change in the WHR, the testosterone-induced 12-month change in NCP volume increased by 26.96 mm3 (95% confidence interval, 7.72-46.20).ConclusionAmong older men with low testosterone treated for 1 year, greater WHR was associated with greater NCP progression, as measured by CCTA. Other biomarkers and anthropometric measures did not show statistically significant association with plaque progression
Rationale and design of the CONFIRM2 (Quantitative COroNary CT Angiography Evaluation For Evaluation of Clinical Outcomes: An InteRnational, Multicenter Registry) study.
BACKGROUND
In the last 15 years, large registries and several randomized clinical trials have demonstrated the diagnostic and prognostic value of coronary computed tomography angiography (CCTA). Advances in CT scanner technology and developments of analytic tools now enable accurate quantification of coronary artery disease (CAD), including total coronary plaque volume (TPV) and low attenuation plaque volume (LAP). The primary aim of CONFIRM2, (Quantitative COroNary CT Angiography Evaluation For Evaluation of Clinical Outcomes: An InteRnational, Multicenter Registry) is to perform comprehensive quantification of CCTA findings, including coronary, non-coronary cardiac, non-cardiac vascular, non-cardiac findings, and relate them to clinical variables and cardiovascular clinical outcomes.
DESIGN
CONFIRM2 is a multicenter, international observational cohort study designed to evaluate multidimensional associations between quantitative phenotype of cardiovascular disease and future adverse clinical outcomes in subjects undergoing clinically indicated CCTA. The targeted population is heterogenous and includes patients undergoing CCTA for atherosclerotic evaluation, valvular heart disease, congenital heart disease or pre-procedural evaluation. Automated software will be utilized for quantification of coronary plaque, stenosis, vascular morphology and cardiac structures for rapid and reproducible tissue characterization. Up to 30,000 patients will be included from up to 50 international multi-continental clinical CCTA sites and followed for 3-4 years.
SUMMARY
CONFIRM2 is one of the largest CCTA studies to establish the clinical value of a multiparametric approach to quantify the phenotype of cardiovascular disease by CCTA using automated imaging solutions
Plaque progression assessed by a novel semi-automated quantitative plaque software on coronary computed tomography angiography between diabetes and non-diabetes patients: A propensity-score matching study
Background and aimsWe aimed at investigating whether diabetes is associated with progression in coronary plaque components.MethodsWe identified 142 study subjects undergoing serial coronary computed tomography angiography. The resulting propensity score was applied 1:1 to match diabetic patients to non-diabetic patients for clinical risk factors, prior coronary stenting, coronary artery calcium (CAC) score and the serial scan interval, resulting in the 71 diabetes and 71 non-diabetes patients. Coronary plaque (total, calcified, non-calcified including fibrous, fibrous-fatty and low attenuation plaque [LAP]) volume normalized by total coronary artery length was measured using semi-automated plaque software and its change overtime between diabetic and non-diabetic patients was evaluated.ResultsThe matching was successful without significant differences between the two groups in all matched variables. The baseline volumes in each plaque also did not differ. During a mean scan interval of 3.4 ± 1.8 years, diabetic patients showed a 2-fold greater progression in normalized total plaque volume (TPV) than non-diabetes patients (52.8 mm3vs. 118.3 mm3, p = 0.005). Multivariable linear regression model revealed that diabetes was associated with normalized TPV progression (β 72.3, 95%CI 24.3-120.3). A similar trend was observed for the non-calcified components, but not calcified plaque (β 3.8, 95%CI -27.0-34.7). Higher baseline CAC score was found to be associated with total, non-calcified and calcified plaque progression. However, baseline non-calcified volume but not CAC score was associated with LAP progression.ConclusionsThe current study among matched patients indicates diabetes is associated with a greater plaque progression. Our results show the need for strict adherence of diabetic patients to the current preventive guidelines
- …