4,886 research outputs found
An algorithmic approach to the existence of ideal objects in commutative algebra
The existence of ideal objects, such as maximal ideals in nonzero rings,
plays a crucial role in commutative algebra. These are typically justified
using Zorn's lemma, and thus pose a challenge from a computational point of
view. Giving a constructive meaning to ideal objects is a problem which dates
back to Hilbert's program, and today is still a central theme in the area of
dynamical algebra, which focuses on the elimination of ideal objects via
syntactic methods. In this paper, we take an alternative approach based on
Kreisel's no counterexample interpretation and sequential algorithms. We first
give a computational interpretation to an abstract maximality principle in the
countable setting via an intuitive, state based algorithm. We then carry out a
concrete case study, in which we give an algorithmic account of the result that
in any commutative ring, the intersection of all prime ideals is contained in
its nilradical
A multi-objective DIRECT algorithm for ship hull optimization
The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem
Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing
We propose an all-optical implementation of quantum-information processing in
semiconductor quantum dots, where electron-hole excitations (excitons) serve as
the computational degrees of freedom (qubits). We show that the strong dot
confinement leads to an overall enhancement of Coulomb correlations and to a
strong renormalization of the excitonic states, which can be exploited for
performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for
publication in Phys. Rev. B (Rapid Communication
Adaptive Dynamics and Technological Change
This paper is about the emergence of technological variety arising from market interaction and technological innovation. Existing products in the market compete with innovative ones resulting in a slow and continuous evolution of the underlying technological characteristics of successful products. When technological evolution reaches an equilibrium, it can either be an ESS (Evolutionary Stable Strategy), where marginally innovative products do not penetrate the market, or a branching point, where new products coexist along with established ones. Thus, technological branching can give rise to product variety. In the paper we first introduce Adaptive Dynamics (AD), a recently proposed theory of evolutionary processes, aiming at modelling various features of technological change. Then, a first application of AD in economics is presented and discussed in detail. The limitations of the AD approach, as well as some promising further applications in economics and social sciences, are briefly discussed at the concluding section
Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation
Virtual reality has achieved significant popularity in recent years, and allowing users to move freely within an immersive virtual world has become an important factor critical to realize. The user’s interactions are generally designed to increase the perceived realism, but the locomotion techniques and how these affect the user’s task performance still represent an open issue, much discussed in the literature. In this article, we evaluate the efficiency and effectiveness of, and user preferences relating to, freehand locomotion techniques designed for an immersive virtual environment performed through hand gestures tracked by a sensor placed in the egocentric position and experienced through a head-mounted display. Three freehand locomotion techniques have been implemented and compared with each other, and with a baseline technique based on a controller, through qualitative and quantitative measures. An extensive user study conducted with 60 subjects shows that the proposed methods have a performance comparable to the use of the controller, further revealing the users’ preference for decoupling the locomotion in sub-tasks, even if this means renouncing precision and adapting the interaction to the possibilities of the tracker sensor
Trolox and recombinant Irisin as a potential strategy to prevent neuronal damage induced by random positioning machine exposure in differentiated HT22 cells
Neuronal death could be responsible for the cognitive impairments found in astronauts exposed to spaceflight, highlighting the need to identify potential countermeasures to ensure neuronal health in microgravity conditions. Therefore, differentiated HT22 cells were exposed to simulated microgravity by random positioning machine (RPM) for 48 h, treating them with a single administration of Trolox, recombinant irisin (r-Irisin) or both. Particularly, we investigated cell viability by MTS assay, Trypan Blue staining and western blotting analysis for Akt and B-cell lymphoma 2 (Bcl-2), the intracellular increase of reactive oxygen species (ROS) by fluorescent probe and NADPH oxidase 4 (NOX4) expression, as well as the expression of brain-derived neurotrophic factor (BDNF), a major neurotrophin responsible for neurogenesis and synaptic plasticity. Although both Trolox and r-Irisin manifested a protective effect on neuronal health, the combined treatment produced the best results, with significant improvement in all parameters examined. In conclusion, further studies are needed to evaluate the potential of such combination treatment in counteracting weightlessness-induced neuronal death, as well as to identify other potential strategies to safeguard the health of astronauts exposed to spaceflight
Recommended from our members
Global relevance of marine organic aerosol as ice nucleating particles
Ice nucleating particles (INPs) increase the temperature at which supercooled droplets start to freeze. They are therefore of particular interest in mixed-phase cloud temperature regimes, where supercooled liquid droplets can persist for extended periods of time in the absence of INPs. When INPs are introduced to such an environment, the cloud can quickly glaciate following ice multiplication processes and the Wegener–Bergeron–Findeisen (WBF) process. The WBF process can also cause the ice to grow to precipitation size and precipitate out. All of these processes alter the radiative properties.
Despite their potential influence on climate, the ice nucleation ability and importance of different aerosol species is still not well understood and is a field of active research. In this study, we use the aerosol–climate model ECHAM6-HAM2 to examine the global relevance of marine organic aerosol (MOA), which has drawn much interest in recent years as a potentially important INPs in remote marine regions. We address the uncertainties in emissions and ice nucleation activity of MOA with a range of reasonable set-ups and find a wide range of resulting MOA burdens. The relative importance of MOA as an INP compared to dust is investigated and found to depend strongly on the type of ice nucleation parameterisation scheme chosen. On the zonal mean, freezing due to MOA leads to relative increases in the cloud ice occurrence and in-cloud number concentration close to the surface in the polar regions during summer. Slight but consistent decreases in the in-cloud ice crystal effective radius can also be observed over the same regions during all seasons. Regardless, MOA was not found to affect the radiative balance significantly on the global scale, due to its relatively weak ice activity and a low sensitivity of cloud ice properties to heterogeneous ice nucleation in our model
- …