63 research outputs found

    Seasonal evolution unveils the internal structure of cometary nuclei

    Get PDF
    Remote sensing data of comets 9P/Tempel 1 and 67P/Churyumov-Gerasimenko (67P hereafter) indicate the occurrence of water-ice-rich spots on the surface of cometary nuclei [1-5]. These spots are up to tens of metres in size and appear brighter and bluer than the average surface at visible wavelengths. In addition, the extensive observation campaign performed by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS, [6]) and the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [7]) during the Rosetta escort phase at 67P revealed a seasonal cycle of the nucleus colour. This is characterised by blueing of the surface while approaching perihelion followed by progressive reddening and restoral of the original colour along the outbound orbit. The temporal evolution of the colour has been interpreted in previous studies as the result of increasing exposure of water ice at smaller heliocentric distances [8, 9], however, an explanation of such seasonal cycle in the context of a quantitative cometary activity model was not yet been provided. Recently, in [10] we showed that the seasonal colour cycle observed on comet 67P is determined by the occurrence of the above-mentioned water-ice-rich spots (referred to as Blue Patches - BPs -, given their colour). This can be explained in the context of activity models [11, 12] of pebble-made cometary nuclei [13], i.e. in terms of nucleus surface erosion induced by H2O and CO2 ices sublimation, driving the cometary activity. According to the scenario proposed in [10] (Fig. 1), the presence of the BPs is due to the exposure of subsurface sub-metre-sized Water-ice-Enriched Blocks (WEBs) thanks to surface erosion triggered by CO2 sublimation ejecting decimetre-sized chunks [12]. The WEBs are composed of ice-rich pebbles (dust-to-ice mass ratio δ=2, [14]), embedded in a matrix of drier pebbles (δ>>5) forming most of the nucleus. Once exposed to illumination as BPs, the WEBs are eroded by water-ice sublimation ejecting sub-cm dust [11]. By means of dedicated spectral and thermophysical modelling, we match the nucleus colour temporal evolution measured by the VIRTIS Mapping channel in the 0.55-0.8 µm spectral range. In doing this, we take into account the competing effects of CO2- and H2O-driven erosion that expose and remove the BPs, respectively, and are seasonally modulated by the insolation conditions, primarily depending on the heliocentric distance. The new nucleus model proposed in [10], implying an uneven distribution of water ice in cometary nuclei, reconciles the compositional dishomogeneities observed on comets (the BPs) at macroscopic (up to tens of metres) scale, with a structurally homogeneous pebble-made nucleus at small (centimetre) scale, and with the processes determining the cometary activity at microscopic (sub-pebble) scales. Figure 1. 67P surface gets bluer approaching perihelion as a consequence of the progressive exposure to sunlight of subsurface WEBs (from Figure 4 in Ciarniello et al., 2022, Nature Astronomy, https://doi.org/10.1038/s41550-022-01625-y). The comet nucleus is made of two types of pebbles, both including refractories and CO2 ice, with different water ice content: pebbles with high content of H2O ice form the WEBs, while H2O-ice-poor pebbles represent the rest of the nucleus. CO2 ice is stable beneath the CO2 sublimation front at depths >0.1 m [12]. Approaching perihelion, the CO2 ice sublimation rate increases, eroding the surface by chunk ejection and exposing the WEBs. Once exposed, WEBs lose CO2 and are observable as BPs. Water-ice sublimation erodes the BPs ejecting sub-cm dust from their surface and preventing the formation of a dry crust [11]. The BPs survive until their water-ice fraction is sublimated, producing the observed surface blueing. Please refer to ref. [10] for complete details. References [1] Sunshine, J. M. et al. (2006) Science 311, 1453-1455.[2] Filacchione, G. et al. (2016) Nature 529, 368-372.[3] Raponi, A. et al. (2016) Mon. Not. R. Astron. Soc. 462, S476-S490.[4] Barucci, M. A. et al. (2016) Astron. Astrophys. 595, A102.[5] Oklay, N. et al. (2017) Mon. Not. R. Astron. Soc. 469, S582-S597.[6] Coradini, A. et al. (2007) Space Sci. Rev. 128, 529-559.[7] Keller, H. U. et al. (2007) Space Sci. Rev. 128, 433-506.[8] Fornasier, S. et al. (2016) Science 354, 1566-1570.[9] Filacchione, G. et al. (2020) Nature 578, 49-52.[10] Ciarniello, M. et al. (2022) Nat. Astron. doi:10.1038/s41550-022-01625-y.[11] Fulle, M. et al. (2020) Mon. Not. R. Astron. Soc. 493, 4039-4044.[12] Gundlach, B. et al (2020). Mon. Not. R. Astron. Soc. 493, 3690-3715.[13] Blum, J. et al. (2017) Mon. Not. R. Astron. Soc. 469, S755-S77.[14] O'Rourke, L. et al. (2020) Nature 586, 697-701. Acknowledgements We thank the Italian Space Agency (ASI, Italy; ASI-INAF agreements I/032/05/0 and I/024/12/0), Centre National d'Etudes Spatiales (CNES, France), and Deutsches Zentrum für Luft-und Raumfahrt (DLR, Germany) for supporting this work. VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of IAPS, Istituto di Astrofisica e Planetologia Spaziali of INAF, Rome, which also led the scientific operations. The VIRTIS instrument development for ESA has been funded and managed by ASI (Italy), with contributions from Observatoire de Meudon (France) financed by CNES and from DLR (Germany). The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Leonardo Company, in Campi Bisenzio, Florence, Italy. Part of this research was supported by the ESA Express Procurement (EXPRO) RFP for IPL-PSS/JD/190.2016. D.K. acknowledges DFG-grant KA 3757/2-1. This work was supported by the International Space Science Institute (ISSI) through the ISSI International Team "Characterization of cometary activity of 67P/Churyumov-Gerasimenko comet". This research has made use of NASA's Astrophysics Data System

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta

    Get PDF
    International audienceOn 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet.We aim to characterize the spatial distribution of dust, H2O, and CO2 gas in the inner coma. To do this, we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the rate we calculated using a thermophysical model.For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O emission band), and 4200 nm (CO2 emission band). We measured the average signal in a circular annulus to study the spatial variation around the comet, and in a sector of the annulus to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet center.The spatial correlation between dust and water, both coming from the sunlit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0° subsolar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production with respect to the value calculated using a simple thermophysical model is observed when the head lobe and regions of the southern hemisphere with strong seasonal variations are illuminated (subsolar longitude 270°–50°). A drastic decrease in dust production when the water production (both measured and from the model) displays a maximum occurs when typical northern consolidated regions are illuminated and the southern hemisphere regions with strong seasonal variations are instead in shadow (subsolar longitude 50°–90°). Possible explanations of these observations are presented and discussed

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity

    No full text
    Summary: Parkinson’s disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations—which do not affect intrinsic kinase activity—lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation
    corecore