185 research outputs found

    High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Full text link
    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5m are expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    Enhanced Joule Heating in Umbral Dots

    Full text link
    We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic

    Microscopic Model for Granular Stratification and Segregation

    Full text link
    We study segregation and stratification of mixtures of grains differing in size, shape and material properties poured in two-dimensional silos using a microscopic lattice model for surface flows of grains. The model incorporates the dissipation of energy in collisions between rolling and static grains and an energy barrier describing the geometrical asperities of the grains. We study the phase diagram of the different morphologies predicted by the model as a function of the two parameters. We find regions of segregation and stratification, in agreement with experimental finding, as well as a region of total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Charge transfer complex formation between organic interlayers drives light-soaking in large area perovskite solar cells

    Get PDF
    Light soaking (LS) is a well-known but poorly understood phenomenon in perovskite solar cells (PSCs) which significantly affects device efficiency and stability. LS is greatly reduced in large-area inverted PSCs when a PC61BM electron transport layer (ETL) is replaced with C60, where the ETL is commonly in contact with a thin bathocuproine (BCP) interlayer. Herein, we identify the key molecular origins of this LS effect using a combination of surface photovoltage, ambient photoemission spectroscopy, Raman spectroscopy, integrated with density functional theory simulations. We find that BCP forms a photoinduced charge-transfer (CT) complex with both C60 and PC61BM. The C60/BCP complex accelerates C60 dimer formation, leading to a favourable cascading energetic landscape for electron extraction and reduced recombination loss. In contrast, the PC61BM/BCP complex suppresses PC61BM dimer formation, meaning that PC61BM dimerisation is not the cause of LS. Instead, it is the slow light-induced formation of the PC61BM/BCP CT complex itself, and the new energetic transport levels associated with it, which cause the much slower and stronger LS effect of PC61BM based PSCs. These findings provide key understanding of photoinduced ETL/BCP interactions and their impact on the LS effect in PSCs

    Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds

    Full text link
    [Abridged] The magnetic and kinematic properties of the photospheric Evershed flow are relatively well known, but we are still far from a complete understanding of its nature. The evolution of the flow with time, which is mainly due to appearance of velocity packets called Evershed clouds (ECs), may provide information to further constrain its origin. Here we undertake a detailed analysis of the evolution of the Evershed flow by studying the properties of ECs. In this first paper we determine the sizes, proper motions, location in the penumbra, and frequency of appearance of ECs, as well as their typical Doppler velocities, linear and circular polarization signals, Stokes V area asymmetries, and continuum intensities. High-cadence, high-resolution, full vector spectropolarimetric measurements in visible and infrared lines are used to derive these parameters. We find that ECs appear in the mid penumbra and propage outward along filaments with large linear polarization signals and enhanced Evershed flows. The frequency of appearance of ECs varies between 15 and 40 minutes in different filaments. ECs exhibit the largest Doppler velocities and linear-to-circular polarization ratios of the whole penumbra. In addition, lines formed deeper in the atmosphere show larger Doppler velocities, much in the same way as the ''quiescent'' Evershed flow. According to our observations, ECs can be classified in two groups: type I ECs, which vanish in the outer penumbra, and type II ECs, which cross the outer penumbral boundary and enter the sunspot moat. Most of the observed ECs belong to type I. On average, type II ECs can be detected as velocity structures outside of the spot for only about 14 min. Their proper motions in the moat are significantly reduced with respect to the ones they had in the penumbra.Comment: Accepted for publication in A&

    Models and Observations of Sunspot Penumbrae

    Get PDF
    The mysteries of sunspot penumbrae have been under an intense scrutiny for the past 10 years. During this time, some models have been proposed and refuted, while the surviving ones had to be modified, adapted and evolved to explain the ever-increasing array of observational constraints. In this contribution I will review two of the present models, emphasizing their contributions to this field, but also pinpointing some of their inadequacies to explain a number of recent observations at very high spatial resolution. To help explaining these new observations I propose some modifications to each of them. These modifications bring those two seemingly opposite models closer together into a general picture that agrees well with recent 3D magneto-hydrodynamic simulations.Comment: 9 pages, 1 color figure. Review talk to appear in the proceedings of the International Workshop of 2008 Solar Total Eclipse: Solar Magnetism, Corona and Space Weather--Chinese Space Solar Telescope Scienc

    The impact of electronic versus paper-based data capture on data collection logistics and on missing scores in thyroid cancer patients.

    Get PDF
    The purpose of this study was to investigate the impact of the type of data capture on the time and help needed for collecting patient-reported outcomes as well as on the proportion of missing scores. In a multinational prospective study, thyroid cancer patients from 17 countries completed a validated questionnaire measuring quality of life. Electronic data capture was compared to the paper-based approach using multivariate logistic regression. A total of 437 patients were included, of whom 13% used electronic data capture. The relation between data capture and time needed was modified by the emotional functioning of the patients. Those with clinical impairments in that respect needed more time to complete the questionnaire when they used electronic data capture compared to paper and pencil (OR <sub>adj</sub> 24.0; p = 0.006). This was not the case when patients had sub-threshold emotional problems (OR <sub>adj</sub> 1.9; p = 0.48). The odds of having the researcher reading the questions out (instead of the patient doing this themselves) (OR <sub>adj</sub> 0.1; p = 0.01) and of needing any help (OR <sub>adj</sub> 0.1; p = 0.01) were lower when electronic data capture was used. The proportion of missing scores was equivalent in both groups (OR <sub>adj</sub> 0.4, p = 0.42). The advantages of electronic data capture, such as real-time assessment and fewer data entry errors, may come at the price of more time required for data collection when the patients have mental health problems. As this is not uncommon in thyroid cancer, researchers need to choose the type of data capture wisely for their particular research question

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    corecore