185 research outputs found
High Resolution Observations using Adaptive Optics: Achievements and Future Needs
Over the last few years, several interesting observations were obtained with
the help of solar Adaptive Optics (AO). In this paper, few observations made
using the solar AO are enlightened and briefly discussed. A list of
disadvantages with the current AO system are presented. With telescopes larger
than 1.5m are expected during the next decade, there is a need to develop the
existing AO technologies for large aperture telescopes. Some aspects of this
development are highlighted. Finally, the recent AO developments in India are
also presented
Evershed clouds as precursors of moving magnetic features around sunspots
The relation between the Evershed flow and moving magnetic features (MMFs) is
studied using high-cadence, simultaneous spectropolarimetric measurements of a
sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler
velocities, magnetograms, and total linear polarization maps are calculated
from the observed Stokes profiles. We follow the temporal evolution of two
Evershed clouds that move radially outward along the same penumbral filament.
Eventually, the clouds cross the visible border of the spot and enter the moat
region, where they become MMFs. The flux patch farther from the sunspot has the
same polarity of the spot, while the MMF closer to it has opposite polarity and
exhibits abnormal circular polarization profiles. Our results provide strong
evidence that at least some MMFs are the continuation of the penumbral Evershed
flow into the moat. This, in turn, suggests that MMFs are magnetically
connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu
Enhanced Joule Heating in Umbral Dots
We present a study of magnetic profiles of umbral dots (UDs) and its
consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule
heating using vertical component of magnetic field. In this paper UDs magnetic
profile has been investigated including the new azimuthal component of magnetic
field which might explain the relatively larger enhancement of Joule heating
causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic
Microscopic Model for Granular Stratification and Segregation
We study segregation and stratification of mixtures of grains differing in
size, shape and material properties poured in two-dimensional silos using a
microscopic lattice model for surface flows of grains. The model incorporates
the dissipation of energy in collisions between rolling and static grains and
an energy barrier describing the geometrical asperities of the grains. We study
the phase diagram of the different morphologies predicted by the model as a
function of the two parameters. We find regions of segregation and
stratification, in agreement with experimental finding, as well as a region of
total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm
Charge transfer complex formation between organic interlayers drives light-soaking in large area perovskite solar cells
Light soaking (LS) is a well-known but poorly understood phenomenon in perovskite solar cells (PSCs) which significantly affects device efficiency and stability. LS is greatly reduced in large-area inverted PSCs when a PC61BM electron transport layer (ETL) is replaced with C60, where the ETL is commonly in contact with a thin bathocuproine (BCP) interlayer. Herein, we identify the key molecular origins of this LS effect using a combination of surface photovoltage, ambient photoemission spectroscopy, Raman spectroscopy, integrated with density functional theory simulations. We find that BCP forms a photoinduced charge-transfer (CT) complex with both C60 and PC61BM. The C60/BCP complex accelerates C60 dimer formation, leading to a favourable cascading energetic landscape for electron extraction and reduced recombination loss. In contrast, the PC61BM/BCP complex suppresses PC61BM dimer formation, meaning that PC61BM dimerisation is not the cause of LS. Instead, it is the slow light-induced formation of the PC61BM/BCP CT complex itself, and the new energetic transport levels associated with it, which cause the much slower and stronger LS effect of PC61BM based PSCs. These findings provide key understanding of photoinduced ETL/BCP interactions and their impact on the LS effect in PSCs
Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds
[Abridged] The magnetic and kinematic properties of the photospheric Evershed
flow are relatively well known, but we are still far from a complete
understanding of its nature. The evolution of the flow with time, which is
mainly due to appearance of velocity packets called Evershed clouds (ECs), may
provide information to further constrain its origin. Here we undertake a
detailed analysis of the evolution of the Evershed flow by studying the
properties of ECs. In this first paper we determine the sizes, proper motions,
location in the penumbra, and frequency of appearance of ECs, as well as their
typical Doppler velocities, linear and circular polarization signals, Stokes V
area asymmetries, and continuum intensities. High-cadence, high-resolution,
full vector spectropolarimetric measurements in visible and infrared lines are
used to derive these parameters. We find that ECs appear in the mid penumbra
and propage outward along filaments with large linear polarization signals and
enhanced Evershed flows. The frequency of appearance of ECs varies between 15
and 40 minutes in different filaments. ECs exhibit the largest Doppler
velocities and linear-to-circular polarization ratios of the whole penumbra. In
addition, lines formed deeper in the atmosphere show larger Doppler velocities,
much in the same way as the ''quiescent'' Evershed flow. According to our
observations, ECs can be classified in two groups: type I ECs, which vanish in
the outer penumbra, and type II ECs, which cross the outer penumbral boundary
and enter the sunspot moat. Most of the observed ECs belong to type I. On
average, type II ECs can be detected as velocity structures outside of the spot
for only about 14 min. Their proper motions in the moat are significantly
reduced with respect to the ones they had in the penumbra.Comment: Accepted for publication in A&
Models and Observations of Sunspot Penumbrae
The mysteries of sunspot penumbrae have been under an intense scrutiny for
the past 10 years. During this time, some models have been proposed and
refuted, while the surviving ones had to be modified, adapted and evolved to
explain the ever-increasing array of observational constraints. In this
contribution I will review two of the present models, emphasizing their
contributions to this field, but also pinpointing some of their inadequacies to
explain a number of recent observations at very high spatial resolution. To
help explaining these new observations I propose some modifications to each of
them. These modifications bring those two seemingly opposite models closer
together into a general picture that agrees well with recent 3D
magneto-hydrodynamic simulations.Comment: 9 pages, 1 color figure. Review talk to appear in the proceedings of
the International Workshop of 2008 Solar Total Eclipse: Solar Magnetism,
Corona and Space Weather--Chinese Space Solar Telescope Scienc
The impact of electronic versus paper-based data capture on data collection logistics and on missing scores in thyroid cancer patients.
The purpose of this study was to investigate the impact of the type of data capture on the time and help needed for collecting patient-reported outcomes as well as on the proportion of missing scores.
In a multinational prospective study, thyroid cancer patients from 17 countries completed a validated questionnaire measuring quality of life. Electronic data capture was compared to the paper-based approach using multivariate logistic regression.
A total of 437 patients were included, of whom 13% used electronic data capture. The relation between data capture and time needed was modified by the emotional functioning of the patients. Those with clinical impairments in that respect needed more time to complete the questionnaire when they used electronic data capture compared to paper and pencil (OR <sub>adj</sub> 24.0; p = 0.006). This was not the case when patients had sub-threshold emotional problems (OR <sub>adj</sub> 1.9; p = 0.48). The odds of having the researcher reading the questions out (instead of the patient doing this themselves) (OR <sub>adj</sub> 0.1; p = 0.01) and of needing any help (OR <sub>adj</sub> 0.1; p = 0.01) were lower when electronic data capture was used. The proportion of missing scores was equivalent in both groups (OR <sub>adj</sub> 0.4, p = 0.42).
The advantages of electronic data capture, such as real-time assessment and fewer data entry errors, may come at the price of more time required for data collection when the patients have mental health problems. As this is not uncommon in thyroid cancer, researchers need to choose the type of data capture wisely for their particular research question
Modern optical astronomy: technology and impact of interferometry
The present `state of the art' and the path to future progress in high
spatial resolution imaging interferometry is reviewed. The review begins with a
treatment of the fundamentals of stellar optical interferometry, the origin,
properties, optical effects of turbulence in the Earth's atmosphere, the
passive methods that are applied on a single telescope to overcome atmospheric
image degradation such as speckle interferometry, and various other techniques.
These topics include differential speckle interferometry, speckle spectroscopy
and polarimetry, phase diversity, wavefront shearing interferometry,
phase-closure methods, dark speckle imaging, as well as the limitations imposed
by the detectors on the performance of speckle imaging. A brief account is
given of the technological innovation of adaptive-optics (AO) to compensate
such atmospheric effects on the image in real time. A major advancement
involves the transition from single-aperture to the dilute-aperture
interferometry using multiple telescopes. Therefore, the review deals with
recent developments involving ground-based, and space-based optical arrays.
Emphasis is placed on the problems specific to delay-lines, beam recombination,
polarization, dispersion, fringe-tracking, bootstrapping, coherencing and
cophasing, and recovery of the visibility functions. The role of AO in
enhancing visibilities is also discussed. The applications of interferometry,
such as imaging, astrometry, and nulling are described. The mathematical
intricacies of the various `post-detection' image-processing techniques are
examined critically. The review concludes with a discussion of the
astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics,
2002, to appear in April issu
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
- …