61 research outputs found

    Iterative solutions to the steady state density matrix for optomechanical systems

    Get PDF
    We present a sparse matrix permutation from graph theory that gives stable incomplete Lower-Upper (LU) preconditioners necessary for iterative solutions to the steady state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse, and is the only method found to be stable at large Hilbert space dimensions. This allows for steady state solutions to otherwise intractable quantum optomechanical systems.Comment: 10 pages, 5 figure

    Universal quantum fluctuations of a cavity mode driven by a Josephson junction

    Get PDF
    We analyze the quantum dynamics of a superconducting cavity coupled to a voltage biased Josephson junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of parameters and are able to identify regimes where the fluctuations in the system take on universal values.Comment: 5 pages, 4 figure

    Sensitivity and Linearity of Superconducting Radio-Frequency Single-Electron Transistors: Effects of Quantum Charge Fluctuations

    Full text link
    We have investigated the effects of quantum fluctuations of quasiparticles on the operation of superconducting radio-frequency single-electron transistors (RF-SETs) for large values of the quasiparticle cotunneling parameter α=8EJ/Ec\alpha=8E_{J}/E_{c}, where EJE_{J} and EcE_{c} are the Josephson and charging energies. We find that for α>1\alpha>1, subgap RF-SET operation is still feasible despite quantum fluctuations that renormalize the SET charging energy and wash out quasiparticle tunneling thresholds. Surprisingly, such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity.Comment: Submitted to Phys. Rev. Let

    Si/SiGe quantum dot with superconducting single-electron transistor charge sensor

    Full text link
    We report a robust process for fabrication of surface-gated Si/SiGe quantum dots (QDs) with an integrated superconducting single-electron transistor (S-SET) charge sensor. A combination of a deep mesa etch and AlOx backfill is used to reduce gate leakage. After the leakage current is suppressed, Coulomb oscillations of the QD and the current-voltage characteristics of the S-SET are observed at a temperature of 0.3 K. Coupling of the S-SET to the QD is confirmed by using the S-SET to perform sensing of the QD charge state.Comment: 4 pages, 3 figure
    • …
    corecore