7 research outputs found
Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?
The emerging evidence on the interconnectedness between the gut microbiome and host metabolism has led to a paradigm shift in the study of metabolic diseases such as obesity and type 2 diabetes with implications on both underlying pathophysiology and potential treatment. Mounting preclinical and clinical evidence of gut microbiota shifts, increased intestinal permeability in metabolic disease, and the critical positioning of the intestinal barrier at the interface between environment and internal milieu have led to the rekindling of the “leaky gut” concept. Although increased circulation of surrogate markers and directly measurable intestinal permeability have been linked to increased systemic inflammation in metabolic disease, mechanistic models behind this phenomenon are underdeveloped. Given repeated observations of microorganisms in several tissues with congruent phylogenetic findings, we review current evidence on these unanticipated niches, focusing specifically on the interaction between gut permeability and intestinal as well as extra-intestinal bacteria and their joint contributions to systemic inflammation and metabolism. We further address limitations of current studies and suggest strategies drawing on standard techniques for permeability measurement, recent advancements in microbial culture independent techniques and computational methodologies to robustly develop these concepts, which may be of considerable value for the development of prevention and treatment strategies
Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide
The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk
Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?
The emerging evidence on the interconnectedness between the gut microbiome and host metabolism has led to a paradigm shift in the study of metabolic diseases such as obesity and type 2 diabetes with implications on both underlying pathophysiology and potential treatment. Mounting preclinical and clinical evidence of gut microbiota shifts, increased intestinal permeability in metabolic disease, and the critical positioning of the intestinal barrier at the interface between environment and internal milieu have led to the rekindling of the “leaky gut” concept. Although increased circulation of surrogate markers and directly measurable intestinal permeability have been linked to increased systemic inflammation in metabolic disease, mechanistic models behind this phenomenon are underdeveloped. Given repeated observations of microorganisms in several tissues with congruent phylogenetic findings, we review current evidence on these unanticipated niches, focusing specifically on the interaction between gut permeability and intestinal as well as extra-intestinal bacteria and their joint contributions to systemic inflammation and metabolism. We further address limitations of current studies and suggest strategies drawing on standard techniques for permeability measurement, recent advancements in microbial culture independent techniques and computational methodologies to robustly develop these concepts, which may be of considerable value for the development of prevention and treatment strategies
Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders?
The emerging evidence on the interconnectedness between the gut microbiome and host metabolism has led to a paradigm shift in the study of metabolic diseases such as obesity and type 2 diabetes with implications on both underlying pathophysiology and potential treatment. Mounting preclinical and clinical evidence of gut microbiota shifts, increased intestinal permeability in metabolic disease, and the critical positioning of the intestinal barrier at the interface between environment and internal milieu have led to the rekindling of the “leaky gut” concept. Although increased circulation of surrogate markers and directly measurable intestinal permeability have been linked to increased systemic inflammation in metabolic disease, mechanistic models behind this phenomenon are underdeveloped. Given repeated observations of microorganisms in several tissues with congruent phylogenetic findings, we review current evidence on these unanticipated niches, focusing specifically on the interaction between gut permeability and intestinal as well as extra-intestinal bacteria and their joint contributions to systemic inflammation and metabolism. We further address limitations of current studies and suggest strategies drawing on standard techniques for permeability measurement, recent advancements in microbial culture independent techniques and computational methodologies to robustly develop these concepts, which may be of considerable value for the development of prevention and treatment strategies
The role of the oral microbiome in obesity and metabolic disease: potential systemic implications and effects on taste perception
Abstract Obesity and its metabolic sequelae still comprise a challenge when it comes to understanding mechanisms, which drive these pandemic diseases. The human microbiome as a potential key player has attracted the attention of broader research for the past decade. Most of it focused on the gut microbiome while the oral microbiome has received less attention. As the second largest niche, the oral microbiome is associated with a multitude of mechanisms, which are potentially involved in the complex etiology of obesity and associated metabolic diseases. These mechanisms include local effects of oral bacteria on taste perception and subsequent food preference as well as systemic effects on adipose tissue function, the gut microbiome and systemic inflammation. This review summarizes a growing body of research, pointing towards a more prominent role of the oral microbiome in obesity and associated metabolic diseases than expected. Ultimately, our knowledge on the oral microbiome may support the development of new patient oriented therapeutic approaches inevitable to relieve the health burden of metabolic diseases and to reach long-term benefits in patients´ lives
Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide
Abstract The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied “explainable” machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk