1,609 research outputs found
Dynamics of Morphology-Dependent Resonances by Openness in Dielectric Disk for TE polarization
We have studied the dynamics of morphology-dependent resonances by openness
in a dielectric microdisk for TE polarization. For the first time, we report
that the dynamics exhibits avoided resonance crossings between inner and outer
resonances even though the corresponding billiard is integrable. Due to the
avoidance, inner and outer resonances can be exchanged and -factor of inner
resonances is strongly affected. We analyze the diverse phenomena aroused from
the dynamics including the avoided crossings.Comment: 6 pages, 5 figure
The ice-breaker effect: Singing mediates fast social bonding
It has been proposed that singing evolved to facilitate social cohesion. However, it remains unclear whether bonding arises out of properties intrinsic to singing or whether any social engagement can have a similar effect. Furthermore, previous research has used one-off singing sessions without exploring the emergence of social bonding over time. In this semi-naturalistic study, we followed newly formed singing and non-singing (crafts or creative writing) adult education classes over seven months. Participants rated their closeness to their group and their affect, and were given a proxy measure of endorphin release, before and after their class, at three timepoints (months 1, 3 and 7). We show that although singers and non-singers felt equally connected by timepoint 3, singers experienced much faster bonding: singers demonstrated a significantly greater increase in closeness at timepoint 1, but the more gradual increase shown by non-singers caught up over time. This represents the first evidence for an ‘ice-breaker effect’ of singing in promoting fast cohesion between unfamiliar individuals, which bypasses the need for personal knowledge of group members gained through prolonged interaction. We argue that singing may have evolved to quickly bond large human groups of relative strangers, potentially through encouraging willingness to coordinate by enhancing positive affect
Resonance Patterns in a Stadium-shaped Microcavity
We investigate resonance patterns in a stadium-shaped microcavity around
, where is the refractive index, the vacuum
wavenumber, and the radius of the circular part of the cavity. We find that
the patterns of high resonances can be classified, even though the
classical dynamics of the stadium system is chaotic. The patterns of the high
resonances are consistent with the ray dynamical consideration, and appears
as the stationary lasing modes with low pumping rate in the nonlinear dynamical
model. All resonance patterns are presented in a finite range of .Comment: 8 pages, 9 figure
- …