254 research outputs found

    Human Clostridium difficile infection caused by a livestock-associated PCR ribotype 237 strain in Western Australia

    Get PDF
    Introduction: Clostridium difficile infection (CDI) is a significant gastrointestinal disease in the developed world and increasingly recognised as a zoonotic infection. In North America and Europe, the PCR ribotype (RT) 078 strain of C. difficile is commonly found in production animals and as a cause of disease in humans although proof of transmission from animals is lacking. This strain is absent in Australian livestock. We report a case of human CDI caused by a strain of C. difficile belonging to known Australian livestock-associated RT 237. Case presentation: A young male was admitted for multiple trauma following a motor vehicle accident and placed on piperacillin/tazobactam for pneumonia. After 4 days of treatment, he developed symptoms of CDI, which was confirmed in the laboratory. His symptoms resolved after 6 days of intravenous metronidazole. The strain of C. difficile isolated was identified as RT 237, an unusual RT previously found in with several Western Australia piggeries. Conclusion: This case of CDI caused by an unusual livestock-associated C. difficile RT 237 supports the hypothesis of zoonotic transmission. The case highlights the potential of livestock to act as reservoir for C. difficile and the need for continued surveillance of CDI in both human and animal populations

    Three-body structure of low-lying 18Ne states

    Full text link
    We investigate to what extent 18Ne can be descibed as a three-body system made of an inert 16O-core and two protons. We compare to experimental data and occasionally to shell model results. We obtain three-body wave functions with the hyperspherical adiabatic expansion method. We study the spectrum of 18Ne, the structure of the different states and the predominant transition strengths. Two 0+, two 2+, and one 4+ bound states are found where they are all known experimentally. Also one 3+ close to threshold is found and several negative parity states, 1-, 3-, 0-, 2-, most of them bound with respect to the 16O excited 3- state. The structures are extracted as partial wave components, as spatial sizes of matter and charge, and as probability distributions. Electromagnetic decay rates are calculated for these states. The dominating decay mode for the bound states is E2 and occasionally also M1.Comment: 17 pages, 5 figures (version to appear in EPJA

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    The price of rapid exit in venture capital-backed IPOs

    Get PDF
    This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    Measurement of E2 transition strengths in Mg32,34

    Get PDF
    The degree of collectivity in the neutron-rich nuclei Mg32 and Mg34 has been determined via intermediate-energy Coulomb excitation in inverse kinematics. Measured energies of the first excited 2+ states and reduced electric quadrupole transition probabilities B(E2;0g.s.+→21+) are presented for Mg32 and Mg34. The results agree with previous measurements and confirm the placement of both nuclei within the "island of inversion.

    Single-cell RNA sequencing of liver fine-needle aspirates captures immune diversity in the blood and liver in chronic hepatitis B patients

    Get PDF
    Background and Aims: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. Approach and Results: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S3 picowell-based and the 10× Chromium reverse-emulsion droplet–based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. Conclusions: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.</p
    corecore