3 research outputs found

    HIV Reactivation in Latently Infected Cells with Virological Synapse-Like Cell Contact

    No full text
    HIV reactivation from latency is induced by cytokines but also by cell contact with other cells. To better understand this, J1.1 cells, a latent HIV-1-infected Jurkat derivative, were cocultured with its parental Jurkat. J1.1 cells became p17MA-positive and produced a high level of HIV p24CA antigen, only when they were cocultured with stimulated Jurkat with cell-to-cell contact. In contrast, very little p24CA was produced when they were cocultured without cell contact. Similar results were obtained when latent ACH-2 and its parental A3.01 cells were cocultured. Confocal microscopy revealed that not only HIV-1 p17MA and gp120Env but also LFA-1, CD81, CD59, and TCR CD3 accumulated at the cell contact site, suggesting formation of the virological synapse-like structure. LFA-1–ICAM-1 interaction was involved in the cell-to-cell contact. When J1.1 was cocultured with TCR-deficient Jurkat, the p17MA-positive rate was significantly lower, although the cell-to-cell contact was not impaired. Quantitative proteomics identified 54 membrane molecules, one of which was MHC class I, that accumulated at the cell contact site. Reactivation from latency was also influenced by the presence of stromal cells. Our study indicated that latent HIV-1 in J1.1/ACH-2 cells was efficiently reactivated by cell-to-cell contact with stimulated parental cells, accompanying the virological synapse-like structure

    A Proteomic Analysis of Detergent-Resistant Membranes in HIV Virological Synapse: The Involvement of Vimentin in CD4 Polarization

    No full text
    The cell–cell contact between HIV-1-infected and uninfected cells forms a virological synapse (VS) to allow for efficient HIV-1 transmission. Not only are HIV-1 components polarized and accumulate at cell–cell interfaces, but viral receptors and lipid raft markers are also. To better understand the nature of the HIV-1 VS, detergent-resistant membrane (DRM) fractions were isolated from an infected–uninfected cell coculture and compared to those from non-coculture samples using 2D fluorescence difference gel electrophoresis. Mass spectrometry revealed that ATP-related enzymes (ATP synthase subunit and vacuolar-type proton ATPase), protein translation factors (eukaryotic initiation factor 4A and mitochondrial elongation factor Tu), protein quality-control-related factors (protein disulfide isomerase A3 and 26S protease regulatory subunit), charged multivesicular body protein 4B, and vimentin were recruited to the VS. Membrane flotation centrifugation of the DRM fractions and confocal microscopy confirmed these findings. We further explored how vimentin contributes to the HIV-1 VS and found that vimentin supports HIV-1 transmission through the recruitment of CD4 to the cell–cell interface. Since many of the molecules identified in this study have previously been suggested to be involved in HIV-1 infection, we suggest that a 2D difference gel analysis of DRM-associated proteins may reveal the molecules that play crucial roles in HIV-1 cell–cell transmission
    corecore