11 research outputs found

    Reduced Angiopoietin-Like 4 Expression in Multiple Sclerosis Lesions Facilitates Lipid Uptake by Phagocytes via Modulation of Lipoprotein-Lipase Activity

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS) characterized by the presence of focal demyelinated plaques. Sufficient clearance of myelin and cellular debris is one of the requirements for proper tissue repair and remyelination. The mechanisms underlying the clearance of such debris by phagocytes are not fully understood, but recent findings suggest a prominent role for lipoprotein-lipase (LPL) in this process. Here, we demonstrate that angiopoietin-like 4 (ANGPTL4), a potent inhibitor of LPL, is abundantly expressed in astrocytes in control white matter tissue and its expression is markedly reduced in active MS lesions. We provide evidence that ANGPTL4 inhibits the uptake of myelin-derived lipids by LPL-immunoreactive phagocytes. Taken together, our data suggest that the strong reduction in astrocytic ANGPTL4 expression in active demyelinating MS lesions enables phagocytes to adequately clear myelin debris, setting the stage for remyelination

    Adipokines as Immune Cell Modulators in Multiple Sclerosis

    No full text
    Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS

    Adipokines as Immune Cell Modulators in Multiple Sclerosis

    No full text
    Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS

    Adipokines as immune cell modulators in multiple sclerosis

    No full text
    Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological dete-rioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of devel-oping MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modifi-cation of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adi-pokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS

    The effect of diet interventions on hypothalamic nutrient sensing pathways in rodents

    No full text
    The hypothalamus plays a fundamental role in regulating homeostatic processes including regulation of food intake. Food intake is driven in part by energy balance, which is sensed by specific brain structures through signaling molecules such as nutrients and hormones. Both circulating glucose and fatty acids decrease food intake via a central mechanism involving the hypothalamus and brain stem. Besides playing a role in signaling energy status, glucose and fatty acids serve as fuel for neurons. This review focuses on the effects of glucose and fatty acids on hypothalamic pathways involved in regulation of energy metabolism as well as on the role of the family of peroxisome proliferator activated receptors (PPARs) which are implicated in regulation of central energy homeostasis. We further discuss the effects of different hypercaloric diets on these pathways

    Effects of Fat and Sugar, Either Consumed or Infused toward the Brain, on Hypothalamic ER Stress Markers

    No full text
    Protein-folding stress at the Endoplasmic Reticulum (ER) occurs in the hypothalamus during diet-induced obesity (DIO) and is linked to metabolic disease development. ER stress is buffered by the activation of the unfolded protein response (UPR), a controlled network of pathways inducing a set of genes that recovers ER function. However, it is unclear whether hypothalamic ER stress during DIO results from obesity related changes or from direct nutrient effects in the brain. We here investigated mRNA expression of UPR markers in the hypothalamus of rats that were exposed to a free choice high-fat high-sugar (fcHFHS) diet for 1 week and then overnight fed ad libitum, or fasted, or fat/sugar deprived (i.e., switched from obesogenic diet to chow). In addition, we determined the direct effects of fat/sugar on mRNA expression of hypothalamus UPR markers by intracarotic infusions of intralipids and/or glucose in chow-fed rats that were fasted overnight. Short term (1 week) exposure to fcHFHS diet increased adiposity compared to chow-feeding. Short term exposure to a fcHFHS diet, followed by mild food restriction overnight, induced hypothalamic ER stress in rats as characterized by an increase in spliced to unspliced X-box binding protein 1 mRNA ratio in hypothalamus of fcHFHS fed rats compared to chow fed rats. Moreover, infused lipids toward the brain of overnight fasted rats, were able to induce a similar response. Non-restricted ad libitum fcHFHS-diet fed or totally fasted rats did not show altered ratios. We also observed a clear increase in hypothalamic activating transcription factor 4 mRNA in rats on the fcHFHS diet while being ad libitum fed or when infused with intralipid via the carotic artery compared to vehicle infusions. However, we did not observe induction of downstream targets implying that this effect is a more general stress response and not related to ER stress. Overall, we conclude that the hypothalamic stress response might be a sensitive sensor of fat and energy statu

    Setmelanotide, a Novel, Selective Melanocortin Receptor-4 Agonist Exerts Anti-inflammatory Actions in Astrocytes and Promotes an Anti-inflammatory Macrophage Phenotype

    No full text
    To date, available treatment strategies for multiple sclerosis (MS) are ineffective in preventing or reversing progressive neurologic deterioration, creating a high, and unmet medical need. One potential way to fight MS may be by limiting the detrimental effects of reactive astrocytes, a key pathological hallmark for disease progression. One class of compounds that may exert beneficial effects via astrocytes are melanocortin receptor (MCR) agonists. Among the MCR, MC4R is most abundantly expressed in the CNS and several rodent studies have described that MC4R is—besides neurons—expressed by astrocytes. Activation of MC4R in astrocytes has shown to have potent anti-inflammatory as well as neuroprotective effects in vitro, suggesting that this could be a potential target to ameliorate ongoing inflammation, and neurodegeneration in MS. In this study, we set out to investigate human MC4R expression and analyze its downstream effects. We identified MC4R mRNA and protein to be expressed on astrocytes and observed increased astrocytic MC4R expression in active MS lesions. Furthermore, we show that the novel, highly selective MC4R agonist setmelanotide ameliorates the reactive phenotype in astrocytes in vitro and markedly induced interleukin−6 and −11 production, possibly through enhanced cAMP response element-binding protein (CREB) phosphorylation. Notably, stimulation of human macrophages with medium from astrocytes that were exposed to setmelanotide, skewed macrophages toward an anti-inflammatory phenotype. Taken together, these findings suggest that targeting MC4R on astrocytes might be a novel therapeutic strategy to halt inflammation-associated neurodegeneration in MS

    Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis

    Get PDF
    The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients

    Adipokines in multiple sclerosis patients are related to clinical and radiological measures

    No full text
    BACKGROUND: An imbalance of adipokines, hormones secreted by white adipose tissue, is suggested to play a role in the immunopathology of multiple sclerosis (MS). In people with MS (PwMS) of the same age, we aimed to determine whether the adipokines adiponectin, leptin, and resistin are associated with MS disease severity. Furthermore, we aimed to investigate whether these adipokines mediate the association between body mass index (BMI) and MS disease severity. METHODS: Adiponectin, resistin, and leptin were determined in serum using ELISA. 288 PwMS and 125 healthy controls (HC) were included from the Project Y cohort, a population-based cross-sectional study of people with MS born in the Netherlands in 1966, and age and sex-matched HC. Adipokine levels and BMI were related to demographic, clinical and disability measures, and MRI-based brain volumes. RESULTS: Adiponectin levels were 1.2 fold higher in PwMS vs. HC, especially in secondary progressive MS. Furthermore, we found a sex-specific increase in adiponectin levels in primary progressive (PP) male patients compared to male controls. Leptin and resistin levels did not differ between PwMS and HC, however, leptin levels were associated with higher disability (EDSS) and resistin strongly related to brain volumes in progressive patients, especially in several grey matter regions in PPMS. Importantly, correction for BMI did not significantly change the results. CONCLUSION: In PwMS of the same age, we found associations between adipokines (adiponectin, leptin, and resistin) and a range of clinical and radiological metrics. These associations were independent of BMI, indicating distinct mechanisms

    Adipokines in multiple sclerosis patients are related to clinical and radiological measures

    No full text
    Background: An imbalance of adipokines, hormones secreted by white adipose tissue, is suggested to play a role in the immunopathology of multiple sclerosis (MS). In people with MS (PwMS) of the same age, we aimed to determine whether the adipokines adiponectin, leptin, and resistin are associated with MS disease severity. Furthermore, we aimed to investigate whether these adipokines mediate the association between body mass index (BMI) and MS disease severity. Methods: Adiponectin, resistin, and leptin were determined in serum using ELISA. 288 PwMS and 125 healthy controls (HC) were included from the Project Y cohort, a population-based cross-sectional study of people with MS born in the Netherlands in 1966, and age and sex-matched HC. Adipokine levels and BMI were related to demographic, clinical and disability measures, and MRI-based brain volumes. Results: Adiponectin levels were 1.2 fold higher in PwMS vs. HC, especially in secondary progressive MS. Furthermore, we found a sex-specific increase in adiponectin levels in primary progressive (PP) male patients compared to male controls. Leptin and resistin levels did not differ between PwMS and HC, however, leptin levels were associated with higher disability (EDSS) and resistin strongly related to brain volumes in progressive patients, especially in several grey matter regions in PPMS. Importantly, correction for BMI did not significantly change the results. Conclusion: In PwMS of the same age, we found associations between adipokines (adiponectin, leptin, and resistin) and a range of clinical and radiological metrics. These associations were independent of BMI, indicating distinct mechanisms
    corecore