25 research outputs found
Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma–a feasibility study
Purpose: Radiotherapy (RT) treatment of locally-advanced and recurrent head and neck carcinoma (HNC) results in disappointing outcomes. Combination of RT with cisplatin or cetuximab improves survival but the increased toxicity and patient's comorbidity warrant the need for a less-toxic radiosensitizer. Stimulated by several randomized studies demonstrating the radio-sensitizing effect of hyperthermia, we developed the HYPERcollar. Here, we report early experience and toxicity in patients with advanced HNC. Methods and materials: 119 hyperthermia treatments given to 27 patients were analyzed. Hyperthermia was applied once a week by the HYPERcollar aimed at achieving 39–43 °C in the target area, up to patients’ tolerance. Pre-treatment planning was used to optimize treatment settings. When possible, invasive thermometry catheters were placed. Results: Mean power applied during the 119 hyperthermia treatments ranged from 120 to 1007 W (median 543 W). 15 (13%) hyperthermia treatments were not fully completed due to: pain allocated to hyperthermia (6/15), dyspnea from sticky saliva associated with irradiation (2/15) and unknown reasons (7/15). No severe complications or enhanced thermal or mucosal toxicities were observed. Excluding post-operative treatment, response rates after 3 months were 46% (complete) and 7% (partial). Conclusion: Hyperthermia with the HYPERcollar proved to be safe and feasible with good compliance and promising outcome
Treatment planning guided RF hyperthermia
\u3cp\u3eRecent developments in simulation technology have expanded clinical use of hyperthermia treatment planning (HTP). HTP involves simulation of 1) the induced power absorption and 2) the induced temperature elevation distribution. Specifically the electromagnetic (EM) simulators have evolved into reliable tools providing accurate predictions of the absorbed power distributions applied during radiofrequency (RF) hyperthermia (HT). Such simulation tools are imperative for optimizing the energy delivery by phased array applicators with over four independent antennas. Consequently, HTP is currently being utilized in the clinic before, and during, deep-regional HT. For deep-local HT this strategy has even stronger potential but, due to steep thermal gradients, also more stringent quality requirements. In this paper, we exemplify the clinical implementation process for planning guided HT using phased-Array HT applicators by reporting the steps taken for the HYPERcollar, a head and neck HT applicator. Besides treatment guidance, HTP allows applicator development, investigations into improved heating strategies and detailed assessment of confounding influences. In this way, treatment quality can been assessed and improved offline making HTP an inevitible tool in the improvement of deep-local HT when aiming at target conformal heat delivery.\u3c/p\u3
Electromagnetic redesign of the HYPERcollar applicator: toward improved deep local head-and-neck hyperthermia
Accumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome
Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia
To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR₁₀g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR₁₀g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF
Electromagnetic redesign of the HYPERcollar applicator:toward improved deep local head-and-neck hyperthermia
\u3cp\u3eAccumulating evidence shows that hyperthermia improves head-and-neck cancer treatment. Over the last decade, we introduced a radiofrequency applicator, named HYPERcollar, which enables local heating also of deep locations in this region. Based on clinical experience, we redesigned the HYPERcollar for improved comfort, reproducibility and operator handling. In the current study, we analyze the redesign from an electromagnetic point of view. We show that a higher number of antennas and their repositioning allow for a substantially improved treatment quality. Combined with the much better reproducibility of the water bolus, this will substantially minimize the risk of underexposure. All improvements combined enable a reduction of hot-spot prominence (hot-spot to target SAR quotient) by 32% at an average of 981 W, which drastically reduces the probability for system power to become a treatment limiting source. Moreover, the power deposited in the target selectively can be increased by more than twofold. Hence, we expect that the HYPERcollar redesign currently under construction allows us to double the clinically applied power to the target while reducing the hot-spots, resulting in higher temperatures and, consequently, better clinical outcome. \u3c/p\u3
Quality and comfort in head and neck hyperthermia:a redesign according to clinical experience and simulation studies
\u3cp\u3ePURPOSE: Clinical phase III trials have shown the benefit of adding hyperthermia to radiotherapy and chemotherapy for head and neck cancer (H&N). The HYPERcollar, a functional prototype capable of applying hyperthermia to the entire H&N region was developed. Specific absorption rate-based hyperthermia treatment planning (HTP) is used to optimise HYPERcollar treatments. Hence, besides treatment quality, reproduction and reproducibility of the HTP are also pivotal. In the current work we analysed the impact of key parameters on treatment quality and completely redesigned the mechanical layout of the HYPERcollar for improved treatment quality and patient comfort.\u3c/p\u3e\u3cp\u3eMATERIAL AND METHODS: The requirements regarding patient position and the water bolus shape were quantified by simulation studies. The complete mechanical redesign was based on these requirements and non-modellable improvements were experimentally validated.\u3c/p\u3e\u3cp\u3eRESULTS: From simulation studies we imposed the required positioning accuracy to be within ±5 mm. Simulation studies also showed that the water bolus shape has an important impact on treatment quality. Solutions to meet the requirements were 1) a redesign of the applicator, 2) a redesign of the water bolus, and 3) a renewed positioning strategy. Experiments were used to demonstrate whether the solutions meet the requirements.\u3c/p\u3e\u3cp\u3eCONCLUSIONS: The HYPERcollar redesign improves water bolus shape, stability and skin contact. The renewed positioning strategy allows for positioning of the patient within the required precision of ±5 mm. By clinically introducing the new design, we aim at improving not only treatment quality and reproducibility, but also patient comfort and operator handling, which are all important for a better hyperthermia treatment quality.\u3c/p\u3