4 research outputs found

    VC-precipitation kinetics studied by Small-Angle Neutron Scattering in nano-steels

    No full text
    Nanosteels are used in automotive applications to accomplish resource-efficiency while providing high-tech properties. Quantitative data and further understanding on the precipitation kinetics in Nanosteels can contribute to fulfil this goal. Small-Angle Neutron Scattering measurements are performed on a Fe-C-Mn-V steel, previously heat-treated in a dilatometer at 650°C for several holding times from seconds to 10 hours. The evolution of the precipitate volume fraction, size distribution and number density is calculated by fitting the experimental Small-Angle Neutron Scattering curves. The effect of phase transformation on precipitation kinetics is also discussed. Complementary Transmission Electron Microscopy, Scanning Electron Microscopy and Inductively Coupled Plasma Optical Emission Spectroscopy measurements are performed to support the Small-Angle Neutron Scattering data analysis.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.(OLD) MSE-1RST/Neutron and Positron Methods in Material

    Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS

    No full text
    In-situ Neutron Diffraction and Small-Angle Neutron Scattering (SANS) are employed for the first time simultaneously in order to reveal the interaction between the austenite to ferrite phase transformation and the precipitation kinetics during isothermal annealing at 650 and at 700 °C in three steels with different vanadium (V) and carbon (C) concentrations. Austenite-to-ferrite phase transformation is observed in all three steels at both temperatures. The phase transformation is completed during a 10 h annealing treatment in all cases. The phase transformation is faster at 650 than at 700 °C for all alloys. Additions of vanadium and carbon to the steel composition cause a retardation of the phase transformation. The effect of each element is explained through its contribution to the Gibbs free energy dissipation. The austenite-to-ferrite phase transformation is found to initiate the vanadium carbide precipitation. Larger and fewer precipitates are detected at 700 than at 650 °C in all three steels, and a larger number density of precipitates is detected in the steel with higher concentrations of vanadium and carbon. After 10 h of annealing, the precipitated phase does not reach the equilibrium fraction as calculated by ThermoCalc. The external magnetic field applied during the experiments, necessary for the SANS measurements, causes a delay in the onset and time evolution of the austenite-to-ferrite phase transformation and consequently on the precipitation kinetics.Team Erik OffermanTeam Jilt SietsmaRST/Neutron and Positron Methods in MaterialsInstrumenten groe

    Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS

    No full text
    In-situ Small-Angle Neutron Scattering (SANS) is used to determine the time evolution of the chemical composition of precipitates at 650 °C and 700 °C in three micro-alloyed steels with different vanadium (V) and carbon (C) concentrations. Precipitates with a distribution of substoichiometric carbon-to-metal ratios are measured in all steels. The precipitates are initially metastable with a high iron (Fe) content, which is gradually being substituted by vanadium during isothermal annealing. Eventually a plateau in the composition of the precipitate phase is reached. Faster changes in the precipitate chemical composition are observed at the higher temperature in all steels because of the faster vanadium diffusion at 700 °C. At both temperatures, the addition of more vanadium and more carbon to the steel has an accelerating effect on the evolution of the precipitate composition as a result of a higher driving force for precipitation. Addition of vanadium to the nominal composition of the steel leads to more vanadium rich precipitates, with less iron and a smaller carbon-to-metal ratio. Atom Probe Tomography (APT) shows the presence of precipitates with a distribution of carbon-to-metal ratios, ranging from 0.75 to 1, after 10 h of annealing at 650 °C or 700 °C in all steels. These experimental results are coupled to ThermoCalc equilibrium calculations and literature findings to support the Small-Angle Neutron Scattering results.(OLD) MSE-1(OLD) MSE-3RST/Neutron and Positron Methods in MaterialsMaterials Science and EngineeringBedrijfsondersteunin

    Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels

    No full text
    The precipitation kinetics of vanadium carbides and its interaction with the austenite-to-ferrite phase transformation is studied in two micro-alloyed steels that differ in vanadium and carbon concentrations by a factor of two, but have the same vanadium-to-carbon atomic ratio of 1:1. Dilatometry is used for heat-treating the specimens and studying the phase transformation kinetics during annealing at isothermal holding temperatures of 900, 750 and 650 °C for up to 10 h. Small-Angle Neutron Scattering (SANS) and Atom Probe Tomography (APT) measurements are performed to study the vanadium carbide precipitation kinetics. Vanadium carbide precipitation is not observed after annealing for 10 h at 900 and 750 °C, which is contrary to predictions from thermodynamic equilibrium calculations. Vanadium carbide precipitation is only observed during or after the austenite-to-ferrite phase transformation at 650 °C. The precipitate volume fraction and mean radius continuously increase as holding time increases, while the precipitate number density starts to decrease after 20 min, which corresponds to the time at which the austenite-to-ferrite phase transformation is finished. This indicates that nucleation and growth are dominant during the first 20 min, while later precipitate growth with soft impingement (overlapping diffusion fields) and coarsening take place. APT shows gradual changes in the precipitate chemical composition during annealing at 650 °C, which finally reaches a 1:1 atomic ratio of vanadium-to-carbon in the core of the precipitates after 10 h.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.(OLD) MSE-1RST/Neutron and Positron Methods in MaterialsMaterials Science and EngineeringBedrijfsondersteunin
    corecore