675 research outputs found
Classification of three-body quantum halos
The different kinds of behaviour of three-body systems in the weak binding
limit are classified with specific attention to the transition from a true
three-body system to an effective two-body system. For weakly bound Borromean
systems approaching the limit of binding we show that the size-binding energy
relation is an almost universal function of the three s-wave scattering lengths
measured in units of a hyperradial scaling parameter defined as a mass weighted
average of two-body equivalent square well radii. We explain why three-body
halos follow this curve and why systems appearing above reveal two-body
substructures. Three-body quantum halos 2-3 times larger than the limit set by
zero hypermoment are possible
Assessing the accuracy of Hartree-Fock-Bogoliubov calculations by use of mass relations
The accuracy of three different sets of Hartree-Fock-Bogoliubov calculations
of nuclear binding energies is systematically evaluated. To emphasize minor
fluctuations, a second order, four-point mass relation, which almost completely
eliminates smooth aspects of the binding energy, is introduced. Applying this
mass relation yields more scattered results for the calculated binding
energies. By examining the Gaussian distributions of the non-smooth aspects
which remain, structural differences can be detected between measured and
calculated binding energies. Substructures in regions of rapidly changing
deformation, specifically around and , are clearly
seen for the measured values, but are missing from the calculations. A similar
three-point mass relation is used to emphasize odd-even effects. A clear
decrease with neutron excess is seen continuing outside the experimentally
known region for the calculations.Comment: 13 pages, 9 figures, published versio
The size of two-body weakly bound objects : short versus long range potentials
The variation of the size of two-body objects is investigated, as the
separation energy approaches zero, with both long range potentials and short
range potentials having a repulsive core. It is shown that long range
potentials can also give rise to very extended systems. The asymptotic laws
derived for states with angular momentum l=1,2 differ from the ones obtained
with short range potentials. The sensitivity of the asymptotic laws on the
shape and length of short range potentials defined by two and three parameters
is studied. These ideas as well as the transition from the short to the long
range regime for the l=0 case are illustrated using the Kratzer potential.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
Halos and related structures
The halo structure originated in nuclear physics but is now encountered more
widely. It appears in loosely bound, clustered systems where the spatial
extension of the system is significantly larger than that of the binding
potentials. A review is given on our current understanding of these structures,
with an emphasis on how the structures evolve as more cluster components are
added, and on the experimental situation concerning halo states in light
nuclei.Comment: 27 pages, 3 figures, Contribution to Nobel Symposium 152 "Physics
With Radioactive Beams
- …