1,376 research outputs found
Recommended from our members
Making Musicology Modern: An Interview with Carol Oja
Musicologist Carol Oja is interviewed about her life and career, which focused on 20th-century American modernism, musical theater and cross-cultural composition.Musi
Detecting sterile neutrinos with KATRIN like experiments
A sterile neutrino with mass in the eV range, mixing with the electron
antineutrino, is allowed and possibly even preferred by cosmology and
oscillation experiments. If such eV-mass neutrinos exist they provide a much
better target for direct detection in beta decay experiments than the active
neutrinos which are expected to have sub-eV masses. Their relatively high mass
would allow for an easy separation from the primary decay signal in experiments
such as KATRIN.Comment: 23 pages, 7 figures. References & Figures updated. Text reviewed and
revised. Accepted for publication JCA
Demonstration of an inductively coupled ring trap for cold atoms
We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
Laser frequency stabilization to a single ion
A fundamental limit to the stability of a single-ion optical frequency
standard is set by quantum noise in the measurement of the internal state of
the ion. We discuss how the interrogation sequence and the processing of the
atomic resonance signal can be optimized in order to obtain the highest
possible stability under realistic experimental conditions. A servo algorithm
is presented that stabilizes a laser frequency to the single-ion signal and
that eliminates errors due to laser frequency drift. Numerical simulations of
the servo characteristics are compared to experimental data from a frequency
comparison of two single-ion standards based on a transition at 688 THz in
171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in
the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.
Diffraction grating characterisation for cold-atom experiments
We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions
- …