839 research outputs found

    Bose-Einstein condensates in `giant' toroidal magnetic traps

    Get PDF
    The experimental realisation of gaseous Bose-Einstein condensation (BEC) in 1995 sparked considerable interest in this intriguing quantum fluid. Here we report on progress towards the development of an 87Rb BEC experiment in a large (~10cm diameter) toroidal storage ring. A BEC will be formed at a localised region within the toroidal magnetic trap, from whence it can be launched around the torus. The benefits of the system are many-fold, as it should readily enable detailed investigations of persistent currents, Josephson effects, phase fluctuations and high-precision Sagnac or gravitational interferometry.Comment: 5 pages, 3 figures (Figs. 1 and 2 now work

    A large magnetic storage ring for Bose-Einstein condensates

    Full text link
    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2m, with a heating rate of less than 50nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.Comment: 4 pages, 5 figure

    Spatial interference from well-separated condensates

    Get PDF
    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm -- the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e. non-tomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.Comment: 4 pages, 5 figures - modified to take into account referees' improvement

    Demonstration of an inductively coupled ring trap for cold atoms

    Get PDF
    We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas

    Detecting sterile neutrinos with KATRIN like experiments

    Full text link
    A sterile neutrino with mass in the eV range, mixing with the electron antineutrino, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which are expected to have sub-eV masses. Their relatively high mass would allow for an easy separation from the primary decay signal in experiments such as KATRIN.Comment: 23 pages, 7 figures. References & Figures updated. Text reviewed and revised. Accepted for publication JCA

    Comparative simulations of Fresnel holography methods for atomic waveguides

    Get PDF
    We have simulated the optical properties of micro-fabricated Fresnel zone plates (FZPs) as an alternative to spatial light modulators (SLMs) for producing non-trivial light potentials to trap atoms within a lensless Fresnel arrangement. We show that binary (1-bit) FZPs with wavelength (1μm) spatial resolution consistently outperform kinoforms of spatial and phase resolution comparable to commercial SLMs in root mean square error comparisons, with FZP kinoforms demonstrating increasing improvement for complex target intensity distributions. Moreover, as sub-wavelength resolution microfabrication is possible, FZPs provide an exciting possibility for the creation of static cold-atom trapping potentials useful to atomtronics, interferometry, and the study of fundamental physics

    Diffraction grating characterisation for cold-atom experiments

    Get PDF
    We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions

    High-precision control of static magnetic field magnitude, orientation, and gradient using optically pumped vapour cell magnetometry

    Get PDF
    An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S1/2 F = 4 133Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ|∇B|=13.0δ|∇B|=13.0 pT/mm, respectively. This field control is used to empirically map Mx magnetometer signal amplitude as a function of the static field (B0) orientation
    corecore