1,051 research outputs found

    Efficient Charge Separation in 2D Janus van der Waals Structures with Build-in Electric Fields and Intrinsic p-n Doping

    Get PDF
    Janus MoSSe monolayers were recently synthesised by replacing S by Se on one side of MoS2_2 (or vice versa for MoSe2_2). Due to the different electronegativity of S and Se these structures carry a finite out-of-plane dipole moment. As we show here by means of density functional theory (DFT) calculations, this intrinsic dipole leads to the formation of built-in electric fields when the monolayers are stacked to form NN-layer structures. For sufficiently thin structures (N<4N<4) the dipoles add up and shift the vacuum level on the two sides of the film by ∼N⋅0.7\sim N \cdot 0.7 eV. However, for thicker films charge transfer occurs between the outermost layers forming atomically thin n- and p-doped electron gasses at the two surfaces. The doping concentration can be tuned between about 5⋅10125\cdot 10^{12} e/cm2^{2} and 2⋅10132\cdot 10^{13} e/cm2^{2} by varying the film thickness. The surface charges counteract the static dipoles leading to saturation of the vacuum level shift at around 2.2 eV for N>4N>4. Based on band structure calculations and the Mott-Wannier exciton model, we compute the energies of intra- and interlayer excitons as a function of film thickness suggesting that the Janus multilayer films are ideally suited for achieving ultrafast charge separation over atomic length scales without chemical doping or applied electric fields. Finally, we explore a number of other potentially synthesisable 2D Janus structures with different band gaps and internal dipole moments. Our results open new opportunities for ultrathin opto-electronic components such as tunnel diodes, photo-detectors, or solar cells

    A large magnetic storage ring for Bose-Einstein condensates

    Full text link
    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2m, with a heating rate of less than 50nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.Comment: 4 pages, 5 figure

    NOSTROMO - D5.1 - ATM Performance Metamodels - Preliminary Release

    Get PDF
    This deliverable presents the results obtained with the meta-modelling process presented in D3.1 and D3.2 applied to the two micromodels (or simulators), Mercury and FLITAN, themselves implementing concepts from four SESAR solutions, PJ01.01, PJ07.02, PJ08-01, and PJ02.08. The objective of the meta-modelling process is explained briefly again in the introduction, in particular with respect to performance assessment. The rationale for the selection of the SESAR solutions implemented in the simulators are briefly explained too. The simulators are presented in two distinct chapters. First, a general presentation of each simulator is given, with past challenges and development, before explaining the development steps carried out to implement the concepts from the chosen solutions. Domain research questions that could be answered by these implementations are highlighted along the way. The meta-modelling process is then briefly explained again, followed by the results obtained with the two simulators, in distinct sections. The results highlight the performance of the meta-model with respect to approximating the output of the micromodels, but not the performance of the models themselves with respect to the research questions, which will be explored in WP7 instead. The deliverable closes with some considerations on the meta-modelling performance and next steps for this line of work

    The Briard Problem

    Get PDF
    The Briard breed has stimulated some ophthalmic interest in Canada, Europe, and the United States. Ophthalmoscopic changes similar to central progressive retinal atrophy have been diagnosed. This report adds further insight into the type of retinal degeneration and questions the associated physical findings as they may relate to the retinal disease

    Detecting sterile neutrinos with KATRIN like experiments

    Full text link
    A sterile neutrino with mass in the eV range, mixing with the electron antineutrino, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which are expected to have sub-eV masses. Their relatively high mass would allow for an easy separation from the primary decay signal in experiments such as KATRIN.Comment: 23 pages, 7 figures. References & Figures updated. Text reviewed and revised. Accepted for publication JCA

    Learning and Generalizing Polynomials in Simulation Metamodeling

    Full text link
    The ability to learn polynomials and generalize out-of-distribution is essential for simulation metamodels in many disciplines of engineering, where the time step updates are described by polynomials. While feed forward neural networks can fit any function, they cannot generalize out-of-distribution for higher-order polynomials. Therefore, this paper collects and proposes multiplicative neural network (MNN) architectures that are used as recursive building blocks for approximating higher-order polynomials. Our experiments show that MNNs are better than baseline models at generalizing, and their performance in validation is true to their performance in out-of-distribution tests. In addition to MNN architectures, a simulation metamodeling approach is proposed for simulations with polynomial time step updates. For these simulations, simulating a time interval can be performed in fewer steps by increasing the step size, which entails approximating higher-order polynomials. While our approach is compatible with any simulation with polynomial time step updates, a demonstration is shown for an epidemiology simulation model, which also shows the inductive bias in MNNs for learning and generalizing higher-order polynomials

    Explainable Metamodels for ATM Performance Assessment

    Get PDF
    Fast-time simulation constitutes a well-known and long-established technique within the Air Traffic Management (ATM) community. However, it is often the case that simulation input and output spaces are underutilized, limiting the full understandability, transparency, and interpretability of the obtained results. In this paper, we propose a methodology that combines simulation metamodeling and SHapley Additive exPlanations (SHAP) values, aimed at uncovering the intricate hidden relationships among the input and output variables of a simulated ATM system in a rather practical way. Whereas metamodeling provides explicit functional approximations mimicking the behavior of the simulators, the SHAP-based analysis delivers a systematic framework for improving their explainability. We illustrate our approach using a state-of-the-art ATM simulator across two case studies in which two delay-centered performance metrics are analyzed. The results show that the proposed methodology can effectively make simulation and its results more explainable, facilitating the interpretation of the obtained emergent behavior, and additionally opening new opportunities towards novel performance assessment processes within the ATM research field

    Laser frequency stabilization to a single ion

    Full text link
    A fundamental limit to the stability of a single-ion optical frequency standard is set by quantum noise in the measurement of the internal state of the ion. We discuss how the interrogation sequence and the processing of the atomic resonance signal can be optimized in order to obtain the highest possible stability under realistic experimental conditions. A servo algorithm is presented that stabilizes a laser frequency to the single-ion signal and that eliminates errors due to laser frequency drift. Numerical simulations of the servo characteristics are compared to experimental data from a frequency comparison of two single-ion standards based on a transition at 688 THz in 171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.

    Control Flow Analysis for BioAmbients

    Get PDF
    AbstractThis paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We eventually apply our analysis to an example of gene regulation by positive feedback taken from the literature
    • …
    corecore