30 research outputs found

    Structure and features of the complete chloroplast genome of Salix triandroides (Salicaceae)

    No full text
    AbstractSalix triandroides W. P. Fang, an indigenous small willow with high potential for heavy-metal soil remediation and levee protection, has been used for wetland ecological restoration for decades. However, studies on the evolution and genetic breeding of S. triandoides have been hindered by the lack of its genetic information. Here, we present the complete chloroplast genome of S. triandroides, which was assembled from Illumina sequencing data. The chloroplast genome of this species is circular, 155,683 bp in length and includes two inverted repeat regions (IRs) (27,490 bp) separated by a large single-copy (LSC) region (84,463 bp) and a small single-copy (SSC) region (16,240 bp). A total of 126 unique genes were identified, including 81 protein-coding genes, 37 tRNA genes and eight rRNA genes. Comparative analysis identified some hypervariable regions, with potential to be used as specific DNA barcodes or candidate markers for phylogenetic studies. Based on the sequences of the protein-coding genes, the phylogenetic analysis assigned 32 Salix species into two major clades and revealed that S. triandoides was a sister taxon to S. triandra. Our results provide a foundation for further molecular breeding of S. triandroides and insights into the evolution of Salix.Supplemental data for this article is available online at https://doi.org/10.1080/13102818.2021.2023326

    Preparation of Porous MnO@C Core-Shell Nanowires as Anodes for Lithium-Ion Batteries

    No full text
    Porous MnO@C core-shell nanowires were prepared via a simple and facile method. The morphologies, the phase purity, the mass contents, and the BET surface area of the composite were characterized by SEM, XRD, TGA, and N2 adsorption test, respectively. When the composite served as an anode for lithium-ion batteries, it showed superior electrochemical performances. The MnO@C composite presented a reversible capacity of 448.1 mAh g−1 after 100 cycles at the current rate of 200 mA g−1

    Research Progress of High Dielectric Constant Zirconia-Based Materials for Gate Dielectric Application

    No full text
    The high dielectric constant ZrO2, as one of the most promising gate dielectric materials for next generation semiconductor device, is expected to be introduced as a new high k dielectric layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared by various deposition methods and the main methods to improve their electrical properties are introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as well as optimization of low-temperature solution process. The applications of ZrO2 and its composite thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film transistors (TFTs) with low power consumption and high performance are prospected

    Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator

    No full text
    In this paper, a high-k metal-oxide film (ZrO2) was successfully prepared by a solution-phase method, and whose physical properties were measured by X-ray diffraction (XRD), X-ray reflectivity (XRR) and atomic force microscopy (AFM). Furthermore, indium–gallium–zinc oxide thin-film transistors (IGZO-TFTs) with high-k ZrO2 dielectric layers were demonstrated, and the electrical performance and bias stability were investigated in detail. By spin-coating 0.3 M precursor six times, a dense ZrO2 film, with smoother surface and fewer defects, was fabricated. The TFT devices with optimal ZrO2 dielectric exhibit a saturation mobility up to 12.7 cm2 V−1 s−1, and an on/off ratio as high as 7.6 × 105. The offset of the threshold voltage was less than 0.6 V under positive and negative bias stress for 3600 s

    The Effect of Zirconium Doping on Solution-Processed Indium Oxide Thin Films Measured by a Novel Nondestructive Testing Method (Microwave Photoconductivity Decay)

    No full text
    Solution-processed indium oxide is an ideal transparent semiconductor material with wide band gap. Zirconium is an element characterized by a strong binding ability to oxygen which can inhibit the formation of oxygen vacancies and reduce the surface defect state. In this paper, zirconium doped indium oxide (InxZryO) thin films were prepared by the solution method, with indium oxide being doped with zirconium in order to tune the relative number of oxygen vacancies. The influence of the Zr doping concentration and the post-annealed temperature on the properties of the InxZryO thin films was investigated. The results show that the doping process improves the crystallinity and relative density of the obtained films. A novel nondestructive method named microwave photoconductivity decay (μ-PCD) was used to evaluate the quality of InxZryO thin films by simply measuring their response under laser irradiation. The relative number of oxygen vacancies and the minority carrier concentration achieved minimum values at 10 at.% Zr doping concentration. Furthermore, InxZryO thin films with optimal properties from an electrical point of view were obtained at 10 at.% Zr doping concentration, annealed at 400 °C. Characterized by an average transmittance above 90% in the visible range, the obtained InxZryO thin films can be used as active layer materials in the fabrication of high-performance thin film transistor (TFT) devices

    All-Sputtering, High-Transparency, Good-Stability Coplanar Top-Gate Thin Film Transistors

    No full text
    In this work, transparent, stable coplanar top-gate thin film transistors (TFTs) with an active layer of neodymium-doped indium oxide and zinc oxide (Nd-IZO) were successfully fabricated on a glass substrate by all sputtering processes. The devices with a post-annealing temperature of 400 °C exhibited good electrical performances with a saturation mobility (μsat) of 4.25 cm2·V−1·S−1, Ion/Ioff ratio about 106, Vth of −0.97 V and SS about 0.34 V/decade. Furthermore, the devices exhibited excellent negative and positive bias stability (NBS, PBS) of only a ΔVth shift of about −0.04 V and 0.05 V after 1 h, respectively. In addition, the devices showed high transparency about 96% over the visible-light region of 400–700 nm, which indicates a great potential in transparent displays

    Zigzag Hollow Cracks of Silver Nanoparticle Film Regulated by Its Drying Micro-environment

    No full text
    Abstract We first verify the critical impact of evaporation on the formation of zigzag hollow cracks by regulating the drying micro-environment of silver nanoparticle film. Uneven evaporation and component segregation contributes to the flows along the surface and inside of droplets. Asymmetric vapor concentration distribution is capable of weakening the surface flow of droplets, thus suppressing the inner compressive stress of nanoparticles and leading to a surface morphology with less cracks. Although defect-free and surface smooth nanoparticle film deposited by a solution-based method remains a big challenge, our work has referential significance to optimize high-quality nanoparticle film with appropriate deposition and curing processes. Moreover, an optimization possibility through the drying micro-environment should be considered in high-end applications due to its enhanced effect on high-resolution patterns

    A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor

    No full text
    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO2 films by intentionally increasing the concentration of precursor. The ZrO2 films not only exhibit a low leakage current density of 10−6 A/cm2 at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm2·V−1·s−1 and a Ion/Ioff ratio of 106 in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO2/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness

    Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

    No full text
    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium–gallium–zinc–oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm2·V−1·s−1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance

    Amorphous InGaZnO Thin Film Transistor Fabricated with Printed Silver Salt Ink Source/Drain Electrodes

    No full text
    Recently, amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) with inkjet printing silver source/drain electrodes have attracted great attention, especially for large area and flexible electronics applications. The silver ink could be divided into two types: one is based on silver nanoparticles, and the other is silver salt ink. Organic materials are essential in the formulation of nanoparticle ink as a strong disperse stabilizer to prevent agglomeration of silver particles, but will introduce contact problems between the silver electrodes and the a-IGZO active layer after annealing, which is difficult to eliminate and leads to poor device properties. Our experiment is aimed to reduce this effect by using a silver salt ink without stabilizer component. With optimized inkjet printing conditions, the high performance of a-IGZO TFT was obtained with a mobility of 4.28 cm2/V·s and an on/off current ratio over 106. The results have demonstrated a significant improvement for a-IGZO TFTs with directly printed silver electrodes. This work presents a promising platform for future printed electronic applications
    corecore