46 research outputs found
Preparation, Characterization and Thermoplastic Analysis of Acetylated Starch with Different Substitution Degree
In order to better apply starch as a polymer material in the material industry, it is necessary to modify starch. In this study, cassava starch was used as raw material, and it was pretreated and acetylated in an anhydrous medium. By controlling the change in reaction time, acetylated starch with different degrees of substitution was prepared. And the effects of pretreatment on the physicochemical properties of acetylated starch particles, as well as the differences in physicochemical properties between high degree of substitution starch and low degree of substitution starch, were investigated through characterization methods such as X-ray diffraction, polarizing microscope, scanning electron microscope, contact angle measurement, and differential scanning calorimetry analysis. The results showed that pre-treatment could shorten the time required for acetylation of raw starch. The crystal diffraction peak of high degree of substitution acetylated starch disappeared, the polarized cross disappeared, and the morphology changed from circular to porous. It could be dissolved in organic solvents such as acetone. After 0.5 hours of acetylation reaction, the hydrophobic contact angle of pretreated starch could reach 69.006°±0.520°, the starch melting temperature decreased to 155 ℃, and the decomposition temperature increased from 280 ℃ to 340 ℃, enhanced the thermal stability of starch and possessed thermoplastic properties. This study can prepare acetylated starch with a degree of substitution of 2.5 within half an hour, which can be dissolved in organic solvents, providing new ideas for accelerating the application of starch in the material industry
Characterization of Cassava Starch-Stearic Acid Complex Nanoparticles and Stability of Pickering Emulsions Stabilized by It
In order to study the feasibility of applying cassava starch-fatty acid complexes as a Pickering emulsion stabilizer, complex nanoparticles with complexing index (CPI) of 2.74%, 9.17% and 27.66% were prepared by mixing cassava starch paste containing 78.65% amylopectin at 95 ℃ and stearic acid followed by alcohol precipitation. The three complexes had an irregular spherical-like shape under field emission scanning electron microscopy (FESEM), and their average particle sizes, determined by a laser particle size analyzer, were 315.35, 348.19 and 427.60 nm, respectively. The X-ray diffraction pattern of each of the complexes showed two peaks at 13° and 21°, which were characteristics of the V type crystal structure, and the crystal content increase with increasing CPI. Their deconvoluted infrared spectra exhibited changes in short-range ordering at 1 047, 1 022 and 995 cm-1. The contact angle of the particles with the highest CPI was 60.30°. The three complex nanoparticles stabilized Pickering emulsions for more than seven days compared to less than two days with starch nanoparticles. The complex nanoparticles with CPI of 27.66% stabilized emulsions best. The addition of the complex nanoparticles with CPI of 27.66% at levels above 0.1 g/100 mL resulted in the formation of an emulsion with an oil-to-water ratio of 1:9 (V/V). The emulsion with this nanoparticle at 7 g/100 mL exhibited an improved stability for 60 days without creaming or phase separation. Moreover, no significant changes in the droplet size distribution were observed. The emulsion was stable at pH 5.6-9.0 and not affected by NaCl concentration in the range of 0.01-0.1 mol/L. The emulsion maintained its morphology well after being heated to 80 ℃. These results suggest that the complex nanoparticles are a potential Pickering emulsion stabilizer
A Novel Voltage-Abnormal Cell Detection Method for Lithium-Ion Battery Mass Production Based on Data-Driven Model with Multi-Source Time Series Data
Before leaving the factory, lithium-ion battery (LIB) cells are screened to exclude voltage-abnormal cells, which can increase the fault rate, troubleshooting difficulty, and degrade pack performance. However, the time interval to obtain the detection results through the existing voltage-abnormal cell method is too long, which can seriously affect production efficiency and delay shipment, especially in the mass production of LIBs when facing a large number of time-critical orders. In this paper, we propose a data-driven voltage-abnormal cell detection method, using a fast model with simple architecture, which can detect voltage-abnormal cells based on the multi-source time series data of the LIB without a time interval. Firstly, our method transforms the different source data of a cell into a multi-source time series data representation and utilizes a recurrent-based data embedding to model the relation within it. Then, a simplified MobileNet is used to extract hidden feature from the embedded data. Finally, we detect the voltage-abnormal cells according to the hidden feature with a cell classification head. The experiment results show that the accuracy and average running time of our model on the voltage-abnormal cell detection task is 95.42% and 0.0509 ms per sample, which is a considerable improvement over existing methods
Aerobic Exercise Regulates Apoptosis through the PI3K/Akt/GSK-3β Signaling Pathway to Improve Cognitive Impairment in Alzheimer’s Disease Mice
Neuronal apoptosis is an important factor in the etiology of Alzheimer’s disease (AD). Aerobic exercise (AE) enhances learning and memory, improves cognitive impairment, increases telomere binding protein expression, and decreases apoptosis regulators, but it remains unclear whether it can improve cognitive impairment caused by neuronal apoptosis in AD. Therefore, this study investigated whether an 8-week running table exercise intervention could reduce apoptosis and improve cognitive function in the hippocampal neurons of AD model mice. After the exercise intervention, we evaluated the learning memory ability (positioning, navigation, and spatial search) of mice using a Morris water labyrinth, Nissl staining, immunohistochemistry, and protein application to detect hippocampal PI3K/Akt/GSK-3β signaling pathway protein and hippocampal neuronal cell apoptosis protein B cell lymphoma 2 (Bcl-2) and apoptosis-promoting protein bcl-2-related X (Bax) protein expression. The results showed that aerobic exercise improved the location and spatial exploration ability of mice, increased the number of PI3K- and p-Akt-positive cells, increased the expression of PI3K, p-Akt, and bcl-2 proteins, decreased the expression of GSK-3β and Bax proteins, and increased the bcl-2/Bax ratio of mice. The results suggest that aerobic exercise can reduce apoptosis and improve cognitive function in AD mice. The molecular mechanism may involve activation of the PI3K/Akt/GSK-3β signaling pathway
Lattice defects of ZnO and hybrids with GO: Characterization, EPR and optoelectronic properties
We have prepared and combined ZnO nanoparticles (ZnO-NPs) with different graphene oxide (GO) contents (10%, 20% and 30%) via microwave processing. The procedure provided well-dispersed ZnO-NPs between and onto the rGO layers (GZCs). The annealing temperature and graphene oxide contents affected the UV-Vis absorption, PL emission, defect-states of the ZnO, EPR signals, photo-electrochemical response and charge transfer properties. The HRTEM microscopy images of the GZCs showed interpenetrating structures and clearly visible vacancy defects. The results indicated that the defect sites (Zn interstitials, oxygen vacancy, ionized zinc vacancy and oxygen interstitials) significantly decreased after hybridization with GO. The photo-conversion efficiency of the GZC-10% (η = 13.1 x 10-3%), is 13 times higher than the ZnO-NPs (η = 1.02 x 10-3%) illustrating higher exciton production and separation efficiency of the GZCs under photo-excitation. The GZC-10% has lower (8-15 Ω) charge transfer resistance (Rct) compared to all the GZCs under same experimental conditions, therefore an important reason of better performance of the GZC 10%. The EPR spectra showed presence of radicals in all the samples with GZC 10% most intense signal among the different GZCs
Effects of Laser Treatment of Terbium-Doped Indium Oxide Thin Films and Transistors
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10−11 A vs. 1.66 × 10−12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = −10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V)
Targeting Inhibition of SmpB by Peptide Aptamer Attenuates the Virulence to Protect Zebrafish against Aeromonas veronii Infection
Aeromonas veronii is an important pathogen of aquatic animals, wherein Small protein B (SmpB) is required for pathogenesis by functioning as both a component in stalled-ribosome rescue and a transcription factor in upregulation of virulence gene bvgS expression. Here a specific peptide aptamer PA-1 was selected from peptide aptamer library by bacterial two-hybrid system employing pBT-SmpB as bait. The binding affinity between SmpB and PA-1 was evaluated using enzyme-linked immunosorbent assay. The key amino acids of SmpB that interact with PA-1 were identified. After PA-1 was introduced into A. veronii, the engineered strain designated as A. veronii (pN-PA-1) was more sensitive and grew slower under salt stress in comparison with wild type, as the disruption of SmpB by PA-1 resulted in significant transcription reductions of virulence-related genes. Consistent with these observations, A. veronii (pN-PA-1) was severely attenuated in model organism zebrafish, and vaccination of zebrafish with A. veronii (pN-PA-1) induced a strong antibody response. The vaccinated zebrafish were well protected against subsequent lethal challenges with virulent parental strain. Collectively, we propose that targeting inhibition of SmpB by peptide aptamer PA-1 possesses the desired qualities for a live attenuated vaccine against pathogenic A. veronii
Enhanced Transmittance Modulation of SiO2-Doped Crystalline WO3 Films Prepared from a Polyethylene Oxide (PEO) Template
Polyethylene oxide (PEO)-modified silicon dioxide (SiO2)-doped crystalline tungsten trioxide (WO3) films for use as electrochromic layers were prepared on indium tin oxide (ITO) glass by the sol–gel spin coating technique. The effects of the PEO template and SiO2 on the electrochromic transmittance modulation ability of crystalline WO3 films were investigated. Fourier transform infrared spectroscopy (FT-IR) spectra analysis indicated that PEO was decomposed after annealing at 500 °C for 3 h. X-ray diffraction (XRD) pattern analysis showed that both SiO2 and PEO helped reduce the crystalline grain size of the WO3 films. Atomic force microscope (AFM) images showed that the combined action of SiO2 and PEO was helpful for achieving high surface roughness and a macroporous structure. An electrochromic test indicated that PEO-modified SiO2-doped crystalline WO3 films intercalated more charges (0.0165 C/cm2) than pure WO3 crystalline films (0.0095 C/cm2). The above effects resulted in a good transmittance modulation ability (63.2% at 628 nm) of PEO-modified SiO2-doped crystalline WO3 films, which was higher than that of pure WO3 crystalline films (9.4% at 628 nm)
Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors
Ultra-high definition displays have become a trend for the current flat plane displays. In this study, the contact properties of amorphous silicon–tin oxide thin-film transistors (a-STO TFTs) employed with source/drain (S/D) electrodes were analyzed. Ohmic contact with a good device performance was achieved when a-STO was matched with indium-tin-oxide (ITO) or Mo electrodes. The acceptor-like densities of trap states (DOS) of a-STO TFTs were further investigated by using low-frequency capacitance–voltage (C–V) characteristics to understand the impact of the electrode on the device performance. The reason of the distinct electrical performances of the devices with ITO and Mo contacts was attributed to different DOS caused by the generation of local defect states near the electrodes, which distorted the electric field distribution and formed an electrical potential barrier hindering the flow of electrons. It is of significant importance for circuit designers to design reliable integrated circuits with SnO2-based devices applied in flat panel displays