4 research outputs found

    Adult Camk2a gene reinstatement restores the learning and plasticity deficits of Camk2a knockout mice

    Get PDF
    With the recent findings that mutations in the gene encoding the α-subunit of calcium/calmodulin-dependent protein kinase II (CAMK2A) causes a neurodevelopmental disorder (NDD), it is of great therapeutic relevance to know if there exists a critical developmental time window in which CAMK2A needs to be expressed for normal brain development, or whether expression of the protein at later stages is still beneficial to restore normal functioning. To answer this question, we generated an inducible Camk2a mouse model, which allows us to express CAMK2A at any desired time. Here, we show that adult expression of CAMK2A rescues the behavioral and electrophysiological phenotypes seen in the Camk2a knock-out mice, including spatial and conditional learning and synaptic plasticity. These results suggest that CAMK2A does not play a critical irreversible role in neurodevelopment, which is of importance for future therapies to treat CAMK2A-dependent disorders

    Role of CAMK2D in neurodevelopment and associated conditions

    No full text
    The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes—CAMK2A, CAMK2B, CAMK2G, and CAMK2D—of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.</p

    Role of CAMK2D in neurodevelopment and associated conditions

    No full text
    The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes—CAMK2A, CAMK2B, CAMK2G, and CAMK2D—of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.</p
    corecore