4 research outputs found

    TDP-43 oligomerization and RNA binding are codependent but their loss elicits distinct pathologies

    Full text link
    Aggregation of the RNA-binding protein TDP-43 is the main common neuropathological feature of TDP-43 proteinopathies. In physiological conditions, TDP-43 is predominantly nuclear and contained in biomolecular condensates formed via liquid-liquid phase separation (LLPS). However, in disease, TDP-43 is depleted from these compartments and forms cytoplasmic or, sometimes, intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Here, we show that self-oligomerization and RNA binding cooperatively govern TDP-43 stability, functionality, LLPS and cellular localization. Importantly, our data reveal that TDP-43 oligomerization is connected to, and conformationally modulated by, RNA binding. Mimicking the impaired proteasomal activity observed in patients, we found that TDP-43 forms nuclear aggregates via LLPS and cytoplasmic aggregates via aggresome formation. The favored aggregation pathway depended on the TDP-43 state –monomeric/oligomeric, RNA-bound/-unbound– and the subcellular environment –nucleus/cytoplasm. Our work unravels the origins of heterogeneous pathological species occurring in TDP-43 proteinopathies

    Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns

    Full text link
    Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients

    Tau: a phase in the crowd

    Full text link
    From the management of microtubules to the production of pathological species: liquid–liquid phase separation may tune the behavior of the protein tau in health and neurodegenerative disease. In this issue of The EMBO Journal, Hochmair et al (2022) demystify important aspects of tau condensate compilation

    Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns

    No full text
    Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients.ISSN:0261-4189ISSN:1460-207
    corecore